論文の概要: Open-Sampling: Exploring Out-of-Distribution data for Re-balancing
Long-tailed datasets
- arxiv url: http://arxiv.org/abs/2206.08802v1
- Date: Fri, 17 Jun 2022 14:29:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-20 19:56:56.514927
- Title: Open-Sampling: Exploring Out-of-Distribution data for Re-balancing
Long-tailed datasets
- Title(参考訳): open-sampling: ロングテールデータセットの再バランスのための分散データの探索
- Authors: Hongxin Wei, Lue Tao, Renchunzi Xie, Lei Feng, Bo An
- Abstract要約: 深層ニューラルネットワークは通常、トレーニングデータセットが極端なクラス不均衡に苦しむ場合、パフォーマンスが良くない。
近年の研究では、半教師付き方式でアウト・オブ・ディストリビューションデータによる直接トレーニングが一般化性能を損なうことが報告されている。
そこで我々は,オープンセットノイズラベルを用いて学習データセットのクラス前のバランスを再調整する,オープンサンプリングと呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 24.551465814633325
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep neural networks usually perform poorly when the training dataset suffers
from extreme class imbalance. Recent studies found that directly training with
out-of-distribution data (i.e., open-set samples) in a semi-supervised manner
would harm the generalization performance. In this work, we theoretically show
that out-of-distribution data can still be leveraged to augment the minority
classes from a Bayesian perspective. Based on this motivation, we propose a
novel method called Open-sampling, which utilizes open-set noisy labels to
re-balance the class priors of the training dataset. For each open-set
instance, the label is sampled from our pre-defined distribution that is
complementary to the distribution of original class priors. We empirically show
that Open-sampling not only re-balances the class priors but also encourages
the neural network to learn separable representations. Extensive experiments
demonstrate that our proposed method significantly outperforms existing data
re-balancing methods and can boost the performance of existing state-of-the-art
methods.
- Abstract(参考訳): 深層ニューラルネットワークは通常、トレーニングデータセットが極端なクラス不均衡に苦しむ場合、パフォーマンスが低下する。
最近の研究では、半教師ありの方法で分散データ(すなわちオープンセットサンプル)を直接トレーニングすることは、一般化性能を損なうことを発見した。
本研究では,ベイズ的観点からのマイノリティクラスの拡大に,分配外データが引き続き活用可能であることを理論的に示す。
この動機に基づき,オープンセットノイズラベルを用いてトレーニングデータセットのクラスプリエントを再バランスさせる,open-samplingと呼ばれる新しい手法を提案する。
各オープンセットインスタンスに対して、ラベルは、元のクラス前の分布を補完する事前定義された分布からサンプリングされる。
我々は、オープンサンプリングがクラスプリエントを再バランスさせるだけでなく、ニューラルネットワークが分離可能な表現を学ぶように促すことを実証的に示す。
大規模な実験により,提案手法は既存のデータ再分散手法を著しく上回り,既存の最先端手法の性能向上を図っている。
関連論文リスト
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Progressive Feature Adjustment for Semi-supervised Learning from
Pretrained Models [39.42802115580677]
半教師付き学習(SSL)はラベル付きデータとラベルなしデータの両方を利用して予測モデルを構築することができる。
近年の文献では、事前訓練されたモデルで最先端のSSLを適用しても、トレーニングデータの潜在能力を最大限に発揮できないことが示唆されている。
本稿では,ラベルの誤りに敏感でない特徴抽出器を更新するために,非ラベルデータから擬似ラベルを使用することを提案する。
論文 参考訳(メタデータ) (2023-09-09T01:57:14Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
few-shot object detection (FSOD)では、重度のサンプル不均衡を軽減するために、2段階の訓練パラダイムが広く採用されている。
残念ながら、極端なデータ不足は、提案の分布バイアスを増大させ、RoIヘッドが新しいクラスに進化するのを妨げます。
本稿では,RoIヘッドのローカライゼーションと分類能力を高めるために,単純かつ効果的な提案分布キャリブレーション(PDC)手法を提案する。
論文 参考訳(メタデータ) (2022-12-15T05:09:11Z) - Imbalanced Classification via Explicit Gradient Learning From Augmented
Data [0.0]
本稿では、与えられた不均衡なデータセットを新しいマイノリティインスタンスに拡張する、新しい深層メタラーニング手法を提案する。
提案手法の利点は, 種々の不均衡比を持つ合成および実世界のデータセット上で実証される。
論文 参考訳(メタデータ) (2022-02-21T22:16:50Z) - Out-of-distribution Detection and Generation using Soft Brownian Offset
Sampling and Autoencoders [1.313418334200599]
ディープニューラルネットワークは、分散検出の改善によって部分的に修復される過信に苦しむことが多い。
本稿では,所定の分布内データセットに基づいて分散外データセットを生成できる新しい手法を提案する。
この新しいデータセットは、与えられたデータセットと機械学習タスクの配信外検出を改善するために使用できる。
論文 参考訳(メタデータ) (2021-05-04T06:59:24Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Improved Robustness to Open Set Inputs via Tempered Mixup [37.98372874213471]
本稿では,背景データセットを使わずにオープンセットのロバスト性を向上する簡単な正規化手法を提案する。
提案手法は,オープンセット分類ベースラインにおける最先端の成果を達成し,大規模オープンセット分類問題に容易にスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T04:01:31Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
ニューラルネットワークを用いて各戻り分布から統計量の有限集合を学習する手法を定式化する。
我々の手法は、戻り分布とベルマン目標の間のモーメントの全ての順序を暗黙的に一致させるものとして解釈できる。
Atariゲームスイートの実験により,本手法は標準分布RLベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-24T05:18:17Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Domain Adaptive Bootstrap Aggregating [5.444459446244819]
ブートストラップ集約(英: bootstrap aggregating)は、予測アルゴリズムの安定性を改善する一般的な方法である。
本稿では, ドメイン適応型バッグング手法と, 隣り合う新しい反復型サンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-01-12T20:02:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。