Generalized Multi-Output Gaussian Process Censored Regression
- URL: http://arxiv.org/abs/2009.04822v2
- Date: Wed, 4 May 2022 16:06:58 GMT
- Title: Generalized Multi-Output Gaussian Process Censored Regression
- Authors: Daniele Gammelli, Kasper Pryds Rolsted, Dario Pacino, Filipe Rodrigues
- Abstract summary: We introduce a heteroscedastic multi-output Gaussian process model which combines the non-parametric flexibility of GPs with the ability to leverage information from correlated outputs under input-dependent noise conditions.
Results show how the added flexibility allows our model to better estimate the underlying non-censored (i.e. true) process under potentially complex censoring dynamics.
- Score: 7.111443975103331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When modelling censored observations, a typical approach in current
regression methods is to use a censored-Gaussian (i.e. Tobit) model to describe
the conditional output distribution. In this paper, as in the case of missing
data, we argue that exploiting correlations between multiple outputs can enable
models to better address the bias introduced by censored data. To do so, we
introduce a heteroscedastic multi-output Gaussian process model which combines
the non-parametric flexibility of GPs with the ability to leverage information
from correlated outputs under input-dependent noise conditions. To address the
resulting inference intractability, we further devise a variational bound to
the marginal log-likelihood suitable for stochastic optimization. We
empirically evaluate our model against other generative models for censored
data on both synthetic and real world tasks and further show how it can be
generalized to deal with arbitrary likelihood functions. Results show how the
added flexibility allows our model to better estimate the underlying
non-censored (i.e. true) process under potentially complex censoring dynamics.
Related papers
- Robust Gaussian Processes via Relevance Pursuit [17.39376866275623]
We propose and study a GP model that achieves robustness against sparse outliers by inferring data-point-specific noise levels.
We show, surprisingly, that the model can be parameterized such that the associated log marginal likelihood is strongly concave in the data-point-specific noise variances.
arXiv Detail & Related papers (2024-10-31T17:59:56Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count Data via Data Augmentation [8.114880112033644]
Recently, GPFA has been extended to model spike count data.
We propose a conditionally-conjugate Gaussian process factor analysis (ccGPFA) resulting in both analytically and computationally tractable inference.
arXiv Detail & Related papers (2024-05-19T21:53:36Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
We propose a novel framework for the modeling of heteroscedastic covariance functions.
We employ variational inference to approximate the posterior and facilitate posterior predictive modeling.
We show that our proposed framework offers a robust and versatile tool for a wide array of applications.
arXiv Detail & Related papers (2023-08-29T15:06:47Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Collaborative Nonstationary Multivariate Gaussian Process Model [2.362467745272567]
We propose a novel model called the collaborative nonstationary Gaussian process model(CNMGP)
CNMGP allows us to model data in which outputs do not share a common input set, with a computational complexity independent of the size of the inputs and outputs.
We show that our model generally pro-vides better predictive performance than the state-of-the-art, and also provides estimates of time-varying correlations that differ across outputs.
arXiv Detail & Related papers (2021-06-01T18:25:22Z) - Gaussian Function On Response Surface Estimation [12.35564140065216]
We propose a new framework for interpreting (features and samples) black-box machine learning models via a metamodeling technique.
The metamodel can be estimated from data generated via a trained complex model by running the computer experiment on samples of data in the region of interest.
arXiv Detail & Related papers (2021-01-04T04:47:00Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.