Gaussian Function On Response Surface Estimation
- URL: http://arxiv.org/abs/2101.00772v1
- Date: Mon, 4 Jan 2021 04:47:00 GMT
- Title: Gaussian Function On Response Surface Estimation
- Authors: Mohammadhossein Toutiaee, John Miller
- Abstract summary: We propose a new framework for interpreting (features and samples) black-box machine learning models via a metamodeling technique.
The metamodel can be estimated from data generated via a trained complex model by running the computer experiment on samples of data in the region of interest.
- Score: 12.35564140065216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new framework for 2-D interpreting (features and samples)
black-box machine learning models via a metamodeling technique, by which we
study the output and input relationships of the underlying machine learning
model. The metamodel can be estimated from data generated via a trained complex
model by running the computer experiment on samples of data in the region of
interest. We utilize a Gaussian process as a surrogate to capture the response
surface of a complex model, in which we incorporate two parts in the process:
interpolated values that are modeled by a stationary Gaussian process Z
governed by a prior covariance function, and a mean function mu that captures
the known trends in the underlying model. The optimization procedure for the
variable importance parameter theta is to maximize the likelihood function.
This theta corresponds to the correlation of individual variables with the
target response. There is no need for any pre-assumed models since it depends
on empirical observations. Experiments demonstrate the potential of the
interpretable model through quantitative assessment of the predicted samples.
Related papers
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed.
We conducted numerical experiments for regression, classification, and feature selection tasks.
Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors.
arXiv Detail & Related papers (2023-07-11T09:54:30Z) - Exploring the cloud of feature interaction scores in a Rashomon set [17.775145325515993]
We introduce the feature interaction score (FIS) in the context of a Rashomon set.
We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics.
Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.
arXiv Detail & Related papers (2023-05-17T13:05:26Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Functional Mixtures-of-Experts [0.24578723416255746]
We consider the statistical analysis of heterogeneous data for prediction in situations where the observations include functions.
We first present a new family of ME models, named functional ME (FME) in which the predictors are potentially noisy observations.
We develop dedicated expectation--maximization algorithms for Lasso-like (EM-Lasso) regularized maximum-likelihood parameter estimation strategies to fit the models.
arXiv Detail & Related papers (2022-02-04T17:32:28Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Gaussian Process Regression with Local Explanation [28.90948136731314]
We propose GPR with local explanation, which reveals the feature contributions to the prediction of each sample.
In the proposed model, both the prediction and explanation for each sample are performed using an easy-to-interpret locally linear model.
For a new test sample, the proposed model can predict the values of its target variable and weight vector, as well as their uncertainties.
arXiv Detail & Related papers (2020-07-03T13:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.