MACE: A Flexible Framework for Membership Privacy Estimation in
Generative Models
- URL: http://arxiv.org/abs/2009.05683v5
- Date: Wed, 12 Oct 2022 12:20:43 GMT
- Title: MACE: A Flexible Framework for Membership Privacy Estimation in
Generative Models
- Authors: Yixi Xu, Sumit Mukherjee, Xiyang Liu, Shruti Tople, Rahul Dodhia, Juan
Lavista Ferres
- Abstract summary: We propose the first formal framework for membership privacy estimation in generative models.
Compared to previous works, our framework makes more realistic and flexible assumptions.
- Score: 14.290199072565162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative machine learning models are being increasingly viewed as a way to
share sensitive data between institutions. While there has been work on
developing differentially private generative modeling approaches, these
approaches generally lead to sub-par sample quality, limiting their use in real
world applications. Another line of work has focused on developing generative
models which lead to higher quality samples but currently lack any formal
privacy guarantees. In this work, we propose the first formal framework for
membership privacy estimation in generative models. We formulate the membership
privacy risk as a statistical divergence between training samples and hold-out
samples, and propose sample-based methods to estimate this divergence. Compared
to previous works, our framework makes more realistic and flexible assumptions.
First, we offer a generalizable metric as an alternative to the accuracy metric
especially for imbalanced datasets. Second, we loosen the assumption of having
full access to the underlying distribution from previous studies , and propose
sample-based estimations with theoretical guarantees. Third, along with the
population-level membership privacy risk estimation via the optimal membership
advantage, we offer the individual-level estimation via the individual privacy
risk. Fourth, our framework allows adversaries to access the trained model via
a customized query, while prior works require specific attributes.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - LLM-based Privacy Data Augmentation Guided by Knowledge Distillation
with a Distribution Tutor for Medical Text Classification [67.92145284679623]
We propose a DP-based tutor that models the noised private distribution and controls samples' generation with a low privacy cost.
We theoretically analyze our model's privacy protection and empirically verify our model.
arXiv Detail & Related papers (2024-02-26T11:52:55Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
We propose simulation-based inference methods from privacy-protected datasets.
We illustrate our methods on discrete time-series data under an infectious disease model and with ordinary linear regression models.
arXiv Detail & Related papers (2023-10-19T14:34:17Z) - Advancing Personalized Federated Learning: Group Privacy, Fairness, and
Beyond [6.731000738818571]
Federated learning (FL) is a framework for training machine learning models in a distributed and collaborative manner.
In this paper, we address the triadic interaction among personalization, privacy guarantees, and fairness attained by models trained within the FL framework.
A method is put forth that introduces group privacy assurances through the utilization of $d$-privacy.
arXiv Detail & Related papers (2023-09-01T12:20:19Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
We describe a new approach for testing individual fairness that does not have either requirement.
We show that the proposed method effectively identifies discrimination on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-10-10T21:27:20Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning [1.8692254863855962]
We propose a new framework of data using deep generative models in a differentially private manner.
Within our framework, sensitive data are sanitized with rigorous privacy guarantees in a one-shot fashion.
Our proposal has theoretical guarantees of performance, and empirical evaluations on multiple datasets show that our approach outperforms other methods at reasonable levels of privacy.
arXiv Detail & Related papers (2021-06-08T18:00:01Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
We show that prior work on membership inference attacks may severely underestimate the privacy risks.
We first propose to benchmark membership inference privacy risks by improving existing non-neural network based inference attacks.
We then introduce a new approach for fine-grained privacy analysis by formulating and deriving a new metric called the privacy risk score.
arXiv Detail & Related papers (2020-03-24T00:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.