Learning semantic Image attributes using Image recognition and knowledge
graph embeddings
- URL: http://arxiv.org/abs/2009.05812v1
- Date: Sat, 12 Sep 2020 15:18:48 GMT
- Title: Learning semantic Image attributes using Image recognition and knowledge
graph embeddings
- Authors: Ashutosh Tiwari and Sandeep Varma
- Abstract summary: We propose a shared learning approach to learn semantic attributes of images by combining a knowledge graph embedding model with the recognized attributes of images.
The proposed approach is a step towards bridging the gap between frameworks which learn from large amounts of data and frameworks which use a limited set of predicates to infer new knowledge.
- Score: 0.3222802562733786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting structured knowledge from texts has traditionally been used for
knowledge base generation. However, other sources of information, such as
images can be leveraged into this process to build more complete and richer
knowledge bases. Structured semantic representation of the content of an image
and knowledge graph embeddings can provide a unique representation of semantic
relationships between image entities. Linking known entities in knowledge
graphs and learning open-world images using language models has attracted lots
of interest over the years. In this paper, we propose a shared learning
approach to learn semantic attributes of images by combining a knowledge graph
embedding model with the recognized attributes of images. The proposed model
premises to help us understand the semantic relationship between the entities
of an image and implicitly provide a link for the extracted entities through a
knowledge graph embedding model. Under the limitation of using a custom
user-defined knowledge base with limited data, the proposed model presents
significant accuracy and provides a new alternative to the earlier approaches.
The proposed approach is a step towards bridging the gap between frameworks
which learn from large amounts of data and frameworks which use a limited set
of predicates to infer new knowledge.
Related papers
- ARMADA: Attribute-Based Multimodal Data Augmentation [93.05614922383822]
Attribute-based Multimodal Data Augmentation (ARMADA) is a novel multimodal data augmentation method via knowledge-guided manipulation of visual attributes.
ARMADA is a novel multimodal data generation framework that: (i) extracts knowledge-grounded attributes from symbolic KBs for semantically consistent yet distinctive image-text pair generation.
This also highlights the need to leverage external knowledge proxies for enhanced interpretability and real-world grounding.
arXiv Detail & Related papers (2024-08-19T15:27:25Z) - Decoupled Textual Embeddings for Customized Image Generation [62.98933630971543]
Customized text-to-image generation aims to learn user-specified concepts with a few images.
Existing methods usually suffer from overfitting issues and entangle the subject-unrelated information with the learned concept.
We propose the DETEX, a novel approach that learns the disentangled concept embedding for flexible customized text-to-image generation.
arXiv Detail & Related papers (2023-12-19T03:32:10Z) - Rule-Guided Joint Embedding Learning over Knowledge Graphs [6.831227021234669]
This paper introduces a novel model that incorporates both contextual and literal information into entity and relation embeddings.
For contextual information, we assess its significance through confidence and relatedness metrics.
We validate our model performance with thorough experiments on two established benchmark datasets.
arXiv Detail & Related papers (2023-12-01T19:58:31Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
We introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types.
We show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
arXiv Detail & Related papers (2022-11-04T20:38:12Z) - One-shot Scene Graph Generation [130.57405850346836]
We propose Multiple Structured Knowledge (Relational Knowledgesense Knowledge) for the one-shot scene graph generation task.
Our method significantly outperforms existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-02-22T11:32:59Z) - Boosting Entity-aware Image Captioning with Multi-modal Knowledge Graph [96.95815946327079]
It is difficult to learn the association between named entities and visual cues due to the long-tail distribution of named entities.
We propose a novel approach that constructs a multi-modal knowledge graph to associate the visual objects with named entities.
arXiv Detail & Related papers (2021-07-26T05:50:41Z) - Entity Context Graph: Learning Entity Representations
fromSemi-Structured Textual Sources on the Web [44.92858943475407]
We propose an approach that processes entity centric textual knowledge sources to learn entity embeddings.
We show that the embeddings learned from our approach are: (i) high quality and comparable to a known knowledge graph-based embeddings and can be used to improve them further.
arXiv Detail & Related papers (2021-03-29T20:52:14Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.