Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing
- URL: http://arxiv.org/abs/2009.05872v1
- Date: Sat, 12 Sep 2020 22:18:54 GMT
- Title: Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing
- Authors: Zhidong Gao, Rui Hu, Yanmin Gong
- Abstract summary: Graph-based machine learning models are vulnerable to adversarial perturbations due to the non i.i.d nature of graph data.
We build a smoothed graph classification model with certified robustness guarantee.
We also evaluate the effectiveness of our approach under graph convolutional network (GCN) based multi-class graph classification model.
- Score: 22.16111584447466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph classification has practical applications in diverse fields. Recent
studies show that graph-based machine learning models are especially vulnerable
to adversarial perturbations due to the non i.i.d nature of graph data. By
adding or deleting a small number of edges in the graph, adversaries could
greatly change the graph label predicted by a graph classification model. In
this work, we propose to build a smoothed graph classification model with
certified robustness guarantee. We have proven that the resulting graph
classification model would output the same prediction for a graph under $l_0$
bounded adversarial perturbation. We also evaluate the effectiveness of our
approach under graph convolutional network (GCN) based multi-class graph
classification model.
Related papers
- From Graph Generation to Graph Classification [15.884115251561807]
I derive classification formulas for the probability of a class label given a graph.
A new conditional ELBO can be used to train a generative graph auto-encoder model for discrimination.
arXiv Detail & Related papers (2023-02-15T23:18:47Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
We propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices.
We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.
arXiv Detail & Related papers (2020-06-23T21:10:55Z) - Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral
Measures [14.932318540666545]
We study the problem of few shot graph classification in graph neural networks (GNNs) to recognize unseen classes, given limited labeled graph examples.
We propose an approach where a probability measure is assigned to each graph based on the spectrum of the graphs normalized Laplacian.
arXiv Detail & Related papers (2020-02-27T17:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.