論文の概要: Contrastive Self-supervised Learning for Graph Classification
- arxiv url: http://arxiv.org/abs/2009.05923v1
- Date: Sun, 13 Sep 2020 05:12:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 02:41:08.770088
- Title: Contrastive Self-supervised Learning for Graph Classification
- Title(参考訳): グラフ分類のためのコントラスト的自己教師付き学習
- Authors: Jiaqi Zeng, Pengtao Xie
- Abstract要約: オーバーフィッティングを緩和するために,コントラスト型自己教師学習(CSSL)に基づく2つのアプローチを提案する。
最初のアプローチでは、CSSLを使用して、人間が提供したラベルに頼ることなく、広く利用可能なラベル付きグラフ上のグラフエンコーダを事前訓練する。
第2のアプローチでは、CSSLに基づく正規化器を開発し、教師付き分類タスクと教師なしCSSLタスクを同時に解決する。
- 参考スコア(独自算出の注目度): 21.207647143672585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph classification is a widely studied problem and has broad applications.
In many real-world problems, the number of labeled graphs available for
training classification models is limited, which renders these models prone to
overfitting. To address this problem, we propose two approaches based on
contrastive self-supervised learning (CSSL) to alleviate overfitting. In the
first approach, we use CSSL to pretrain graph encoders on widely-available
unlabeled graphs without relying on human-provided labels, then finetune the
pretrained encoders on labeled graphs. In the second approach, we develop a
regularizer based on CSSL, and solve the supervised classification task and the
unsupervised CSSL task simultaneously. To perform CSSL on graphs, given a
collection of original graphs, we perform data augmentation to create augmented
graphs out of the original graphs. An augmented graph is created by
consecutively applying a sequence of graph alteration operations. A contrastive
loss is defined to learn graph encoders by judging whether two augmented graphs
are from the same original graph. Experiments on various graph classification
datasets demonstrate the effectiveness of our proposed methods.
- Abstract(参考訳): グラフ分類は広く研究されている問題であり、幅広い応用がある。
実世界の多くの問題では、分類モデルのトレーニングに使用可能なラベル付きグラフの数は限られているため、これらのモデルが過剰に適合しがちである。
この問題に対処するために,コントラスト型自己教師学習(CSSL)に基づく2つのアプローチを提案する。
最初のアプローチでは、csslを使用して、ラベル付きラベルに依存することなく、広く利用可能なラベル付きグラフ上でグラフエンコーダをプリトレーニングし、ラベル付きグラフ上でプリトレーニング済みエンコーダを微調整します。
第2のアプローチでは、CSSLに基づく正規化器を開発し、教師付き分類タスクと教師なしCSSLタスクを同時に解決する。
グラフ上でcsslを実行するために、元のグラフの集合が与えられたとき、データ拡張を行い、元のグラフから拡張グラフを作成する。
グラフ変更操作のシーケンスを連続して適用して拡張グラフを作成する。
対照的な損失は、2つの拡張グラフが同じ元のグラフからであるかどうかを判断することでグラフエンコーダを学習するために定義される。
各種グラフ分類データセットの実験により,提案手法の有効性が示された。
関連論文リスト
- A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
グラフに関する継続的な学習は、グラフデータがストリーミング形式で到着するグラフニューラルネットワーク(GNN)のトレーニングに対処する。
Experience Replayのような従来の継続的学習戦略は、ストリーミンググラフに適応することができる。
本稿では, TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning frameworkを提案する。
論文 参考訳(メタデータ) (2024-01-05T22:22:13Z) - Let There Be Order: Rethinking Ordering in Autoregressive Graph
Generation [6.422073551199993]
条件付きグラフ生成タスクは、入力条件のセットが与えられたグラフを生成するためにモデルを訓練する。
従来の多くの研究では、ノードやエッジなどのグラフコンポーネントを漸進的に生成するために自己回帰モデルを用いていた。
グラフは通常、コンポーネント間で自然な順序付けを欠いているため、グラフをトークンの列に変換することは簡単ではない。
論文 参考訳(メタデータ) (2023-05-24T20:52:34Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
ノードがグラフのインスタンスである階層グラフにおけるノード分類問題について検討する。
本稿では階層グラフ相互情報(HGMI)を提案し,理論的保証をもってHGMIを計算する方法を提案する。
本稿では,この階層グラフモデリングとSEAL-CI法がテキストおよびソーシャルネットワークデータに与える影響を実証する。
論文 参考訳(メタデータ) (2022-06-11T04:05:29Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervisionは最近、グラフ学習の新しいフロンティアに力を入れている。
GraphCLは、グラフデータ拡張のアドホックな手作業による選択によって反映されたプレハブ付きプリファブリックを使用する。
グラフ生成器のパラメータ空間における学習可能な連続前処理へと拡張した。
我々は、情報最小化(InfoMin)と情報ボトルネック(InfoBN)の2つの原則を利用して、学習した事前情報を規則化する。
論文 参考訳(メタデータ) (2022-01-04T15:49:18Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing [22.16111584447466]
グラフベースの機械学習モデルは、非i.dなグラフデータの性質のため、敵対的な摂動に弱い。
堅牢性を保証するスムーズなグラフ分類モデルを構築した。
グラフ畳み込みネットワーク(GCN)に基づくマルチクラスグラフ分類モデルにおいて,提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2020-09-12T22:18:54Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。