SCOUTER: Slot Attention-based Classifier for Explainable Image
Recognition
- URL: http://arxiv.org/abs/2009.06138v4
- Date: Fri, 20 Aug 2021 07:34:12 GMT
- Title: SCOUTER: Slot Attention-based Classifier for Explainable Image
Recognition
- Authors: Liangzhi Li, Bowen Wang, Manisha Verma, Yuta Nakashima, Ryo Kawasaki,
Hajime Nagahara
- Abstract summary: We propose a slot attention-based classifier called SCOUTER for transparent yet accurate classification.
SCOUTER's explanation is involved in the final confidence for each category, offering more intuitive interpretation.
We design a new loss tailored for SCOUTER that controls the model's behavior to switch between positive and negative explanations.
- Score: 27.867833878756553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable artificial intelligence has been gaining attention in the past
few years. However, most existing methods are based on gradients or
intermediate features, which are not directly involved in the decision-making
process of the classifier. In this paper, we propose a slot attention-based
classifier called SCOUTER for transparent yet accurate classification. Two
major differences from other attention-based methods include: (a) SCOUTER's
explanation is involved in the final confidence for each category, offering
more intuitive interpretation, and (b) all the categories have their
corresponding positive or negative explanation, which tells "why the image is
of a certain category" or "why the image is not of a certain category." We
design a new loss tailored for SCOUTER that controls the model's behavior to
switch between positive and negative explanations, as well as the size of
explanatory regions. Experimental results show that SCOUTER can give better
visual explanations in terms of various metrics while keeping good accuracy on
small and medium-sized datasets.
Related papers
- Explainable Image Recognition via Enhanced Slot-attention Based Classifier [28.259040737540797]
We introduce ESCOUTER, a visually explainable classifier based on the modified slot attention mechanism.
ESCOUTER distinguishes itself by not only delivering high classification accuracy but also offering more transparent insights into the reasoning behind its decisions.
A novel loss function specifically for ESCOUTER is designed to fine-tune the model's behavior, enabling it to toggle between positive and negative explanations.
arXiv Detail & Related papers (2024-07-08T05:05:43Z) - Dual Feature Augmentation Network for Generalized Zero-shot Learning [14.410978100610489]
Zero-shot learning (ZSL) aims to infer novel classes without training samples by transferring knowledge from seen classes.
Existing embedding-based approaches for ZSL typically employ attention mechanisms to locate attributes on an image.
We propose a novel Dual Feature Augmentation Network (DFAN), which comprises two feature augmentation modules.
arXiv Detail & Related papers (2023-09-25T02:37:52Z) - Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models [64.24227572048075]
We propose a Knowledge-Aware Prompt Tuning (KAPT) framework for vision-language models.
Our approach takes inspiration from human intelligence in which external knowledge is usually incorporated into recognizing novel categories of objects.
arXiv Detail & Related papers (2023-08-22T04:24:45Z) - Visual Recognition with Deep Nearest Centroids [57.35144702563746]
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective network for large-scale visual recognition.
Compared with parametric counterparts, DNC performs better on image classification (CIFAR-10, ImageNet) and greatly boots pixel recognition (ADE20K, Cityscapes)
arXiv Detail & Related papers (2022-09-15T15:47:31Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - SEGA: Semantic Guided Attention on Visual Prototype for Few-Shot
Learning [85.2093650907943]
We propose SEmantic Guided Attention (SEGA) to teach machines to recognize a new category.
SEGA uses semantic knowledge to guide the visual perception in a top-down manner about what visual features should be paid attention to.
We show that our semantic guided attention realizes anticipated function and outperforms state-of-the-art results.
arXiv Detail & Related papers (2021-11-08T08:03:44Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image.
We present a novel approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques.
Our results show that our approach leads to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the art systems.
arXiv Detail & Related papers (2020-12-22T10:08:05Z) - Focus Longer to See Better:Recursively Refined Attention for
Fine-Grained Image Classification [148.4492675737644]
Deep Neural Network has shown great strides in the coarse-grained image classification task.
In this paper, we try to focus on these marginal differences to extract more representative features.
Our network repetitively focuses on parts of images to spot small discriminative parts among the classes.
arXiv Detail & Related papers (2020-05-22T03:14:18Z) - Explainable Image Classification with Evidence Counterfactual [0.0]
We introduce SEDC as a model-agnostic instance-level explanation method for image classification.
For a given image, SEDC searches a small set of segments that, in case of removal, alters the classification.
We compare SEDC(-T) with popular feature importance methods such as LRP, LIME and SHAP, and we describe how the mentioned importance ranking issues are addressed.
arXiv Detail & Related papers (2020-04-16T08:02:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.