Explainable Image Recognition via Enhanced Slot-attention Based Classifier
- URL: http://arxiv.org/abs/2407.05616v1
- Date: Mon, 8 Jul 2024 05:05:43 GMT
- Title: Explainable Image Recognition via Enhanced Slot-attention Based Classifier
- Authors: Bowen Wang, Liangzhi Li, Jiahao Zhang, Yuta Nakashima, Hajime Nagahara,
- Abstract summary: We introduce ESCOUTER, a visually explainable classifier based on the modified slot attention mechanism.
ESCOUTER distinguishes itself by not only delivering high classification accuracy but also offering more transparent insights into the reasoning behind its decisions.
A novel loss function specifically for ESCOUTER is designed to fine-tune the model's behavior, enabling it to toggle between positive and negative explanations.
- Score: 28.259040737540797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The imperative to comprehend the behaviors of deep learning models is of utmost importance. In this realm, Explainable Artificial Intelligence (XAI) has emerged as a promising avenue, garnering increasing interest in recent years. Despite this, most existing methods primarily depend on gradients or input perturbation, which often fails to embed explanations directly within the model's decision-making process. Addressing this gap, we introduce ESCOUTER, a visually explainable classifier based on the modified slot attention mechanism. ESCOUTER distinguishes itself by not only delivering high classification accuracy but also offering more transparent insights into the reasoning behind its decisions. It differs from prior approaches in two significant aspects: (a) ESCOUTER incorporates explanations into the final confidence scores for each category, providing a more intuitive interpretation, and (b) it offers positive or negative explanations for all categories, elucidating "why an image belongs to a certain category" or "why it does not." A novel loss function specifically for ESCOUTER is designed to fine-tune the model's behavior, enabling it to toggle between positive and negative explanations. Moreover, an area loss is also designed to adjust the size of the explanatory regions for a more precise explanation. Our method, rigorously tested across various datasets and XAI metrics, outperformed previous state-of-the-art methods, solidifying its effectiveness as an explanatory tool.
Related papers
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance.
In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Noise-Free Explanation for Driving Action Prediction [11.330363757618379]
We propose an easy-to-implement but effective way to remedy this flaw: Smooth Noise Norm Attention (SNNA)
We weigh the attention by the norm of the transformed value vector and guide the label-specific signal with the attention gradient, then randomly sample the input perturbations and average the corresponding gradients to produce noise-free attribution.
Both qualitative and quantitative evaluation results show the superiority of SNNA compared to other SOTA attention-based explainable methods in generating a clearer visual explanation map and ranking the input pixel importance.
arXiv Detail & Related papers (2024-07-08T19:21:24Z) - CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
We explore the potential of ensembling explanations generated by deep classification models using convolutional model.
Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior.
arXiv Detail & Related papers (2024-04-16T08:39:29Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Motif-guided Time Series Counterfactual Explanations [1.1510009152620664]
We propose a novel model that generates intuitive post-hoc counterfactual explanations.
We validated our model using five real-world time-series datasets from the UCR repository.
arXiv Detail & Related papers (2022-11-08T17:56:50Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
We propose a methodology to produce contrastive explanations for classification models.
Our method is based on projecting model representation to a latent space.
Our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.
arXiv Detail & Related papers (2021-03-02T00:36:45Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image.
We present a novel approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques.
Our results show that our approach leads to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the art systems.
arXiv Detail & Related papers (2020-12-22T10:08:05Z) - SCOUTER: Slot Attention-based Classifier for Explainable Image
Recognition [27.867833878756553]
We propose a slot attention-based classifier called SCOUTER for transparent yet accurate classification.
SCOUTER's explanation is involved in the final confidence for each category, offering more intuitive interpretation.
We design a new loss tailored for SCOUTER that controls the model's behavior to switch between positive and negative explanations.
arXiv Detail & Related papers (2020-09-14T01:34:56Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
Explanations are defined as regions of visual evidence upon which a deep classification network makes a decision.
Our training strategy enforces a periodic saliency-based feedback to encourage the model to focus on the image regions that directly correspond to the ground-truth object.
arXiv Detail & Related papers (2020-03-13T22:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.