Dynamical preparation of a steady ODLRO state in the Hubbard model with
local non-Hermitian impurity
- URL: http://arxiv.org/abs/2009.06167v1
- Date: Mon, 14 Sep 2020 03:05:38 GMT
- Title: Dynamical preparation of a steady ODLRO state in the Hubbard model with
local non-Hermitian impurity
- Authors: X. Z. Zhang, and Z. Song
- Abstract summary: We show that the non-Hermitian Hubbard Hamiltonian can respect a full real spectrum even if a local non-Hermitian impurity is applied to.
Our results lay the groundwork for the dynamical generation of a steady ODLRO state through the critical non-Hermitian strongly correlated system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The cooperation between non-Hermiticity and interaction brings about a lot of
counterintuitive behaviors, which are impossible to exist in the framework of
the Hermitian system. We study the effect of a non-Hermitian impurity on the
Hubbard model in the context of $\eta $ symmetry. We show that the
non-Hermitian Hubbard Hamiltonian can respect a full real spectrum even if a
local non-Hermitian impurity is applied to. The balance between dissipation of
single fermion and on-site pair fluctuation results in a highest-order
coalescing state with off-diagonal long-range order (ODLRO). Based on the
characteristic of High-order EP, the critical non-Hermitian Hubbard model
allows the generation of such a steady superconducting-like state through the
time evolution from an arbitrary initial state, including the vacuum state.
Remarkably, this dynamic scheme is insensitive to the on-site interaction and
entirely independent of the locations of particle dissipation and pair
fluctuation. Our results lay the groundwork for the dynamical generation of a
steady ODLRO state through the critical non-Hermitian strongly correlated
system.
Related papers
- Robust topological feature against non-Hermiticity in Jaynes-Cummings
Model [0.0]
We analytically analyze the topological feature manifested by the Jaynes-Cummings Model (JCM)
The non-Hermiticity tilts the spin winding plane and induces out-of-plane component, while the topological feature is maintained.
arXiv Detail & Related papers (2024-02-09T12:26:59Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Describing non-Hermitian dynamics using a Generalized Three-Time NEGF
for a Partition-free Molecular Junction with Electron-Phonon Coupling [0.0]
We develop the Non-Equilibrium Green's Function formalism for a dissipative molecular junction.
Our approach is partitionless and valid for an external bias with arbitrary time dependence.
arXiv Detail & Related papers (2021-08-11T10:19:31Z) - Probing the superfluid-insulator phase transition by a non-Hermitian
external field [0.0]
We study the response of a thermal state of the Hubbard-like system to either global or local non-Hermitian perturbations.
We show that the dynamical response of the system is strongly sensitive to the underlying quantum phase transition (QPT) from a Mott insulator to a superfluid state.
arXiv Detail & Related papers (2021-06-29T00:47:40Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Observation of non-Hermitian topology with non-unitary dynamics of
solid-state spins [6.692477608972573]
Non-Hermitian topological phases exhibit a number of exotic features.
Non-Hermitian Su-Schrieffer-Heeger (SSH) Hamiltonian is prototypical model for studying non-Hermitian topological phases.
arXiv Detail & Related papers (2020-12-16T19:00:04Z) - Dynamical robustness of topological end states in nonreciprocal
Su-Schrieffer-Heeger models with open boundary conditions [0.41998444721319217]
We study the dynamics of an initial end state in nonreciprocal Su-Schrieffer-Heeger models under open boundary conditions.
We find that it is dynamically more robust than its Hermitian counterpart, because the non-Hermitian skin effect can suppress the part leaking to the bulk sites.
arXiv Detail & Related papers (2020-08-28T06:07:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.