Time-Aware Evidence Ranking for Fact-Checking
- URL: http://arxiv.org/abs/2009.06402v4
- Date: Thu, 9 Sep 2021 11:41:26 GMT
- Title: Time-Aware Evidence Ranking for Fact-Checking
- Authors: Liesbeth Allein, Isabelle Augenstein and Marie-Francine Moens
- Abstract summary: We investigate the hypothesis that the timestamp of a Web page is crucial to how it should be ranked for a given claim.
Our study reveals that time-aware evidence ranking not only surpasses relevance assumptions based purely on semantic similarity or position in a search results list, but also improves veracity predictions of time-sensitive claims in particular.
- Score: 56.247512670779045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Truth can vary over time. Fact-checking decisions on claim veracity should
therefore take into account temporal information of both the claim and
supporting or refuting evidence. In this work, we investigate the hypothesis
that the timestamp of a Web page is crucial to how it should be ranked for a
given claim. We delineate four temporal ranking methods that constrain evidence
ranking differently and simulate hypothesis-specific evidence rankings given
the evidence timestamps as gold standard. Evidence ranking in three
fact-checking models is ultimately optimized using a learning-to-rank loss
function. Our study reveals that time-aware evidence ranking not only surpasses
relevance assumptions based purely on semantic similarity or position in a
search results list, but also improves veracity predictions of time-sensitive
claims in particular.
Related papers
- ChronoFact: Timeline-based Temporal Fact Verification [15.698391632115856]
We propose an end-to-end solution for temporal fact verification that considers the temporal information in claims to obtain relevant evidence sentences.
We learn time-sensitive representations that encapsulate not only the semantic relationships among the events, but also their chronological proximity.
Experiment results demonstrate that the proposed approach significantly enhances the accuracy of temporal claim verification.
arXiv Detail & Related papers (2024-10-19T03:44:19Z) - Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for fact-checking complex claims.
We leverage the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents.
We find a 6% improvement in veracity classification accuracy on the dataset.
arXiv Detail & Related papers (2024-10-07T00:09:50Z) - Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence [59.81749318292707]
We propose a fact verification model named ReRead to retrieve evidence and verify claim.
The proposed system is able to achieve significant improvements upon best-reported models under different settings.
arXiv Detail & Related papers (2023-05-02T03:23:14Z) - Implicit Temporal Reasoning for Evidence-Based Fact-Checking [14.015789447347466]
Our study demonstrates that time positively influences the claim verification process of evidence-based fact-checking.
Our findings show that the presence of temporal information and the manner in which timelines are constructed greatly influence how fact-checking models determine the relevance and supporting or refuting character of evidence documents.
arXiv Detail & Related papers (2023-02-24T10:48:03Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
We propose a novel topic-aware evidence reasoning and stance-aware aggregation model for fact verification.
Tests conducted on two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification.
arXiv Detail & Related papers (2021-06-02T14:33:12Z) - AmbiFC: Fact-Checking Ambiguous Claims with Evidence [57.7091560922174]
We present AmbiFC, a fact-checking dataset with 10k claims derived from real-world information needs.
We analyze disagreements arising from ambiguity when comparing claims against evidence in AmbiFC.
We develop models for predicting veracity handling this ambiguity via soft labels.
arXiv Detail & Related papers (2021-04-01T17:40:08Z) - Misinformation Has High Perplexity [55.47422012881148]
We propose to leverage the perplexity to debunk false claims in an unsupervised manner.
First, we extract reliable evidence from scientific and news sources according to sentence similarity to the claims.
Second, we prime a language model with the extracted evidence and finally evaluate the correctness of given claims based on the perplexity scores at debunking time.
arXiv Detail & Related papers (2020-06-08T15:13:44Z) - DeSePtion: Dual Sequence Prediction and Adversarial Examples for
Improved Fact-Checking [46.13738685855884]
We show that current systems for fact-checking are vulnerable to three categories of realistic challenges for fact-checking.
We present a system designed to be resilient to these "attacks" using multiple pointer networks for document selection.
We find that in handling these attacks we obtain state-of-the-art results on FEVER, largely due to improved evidence retrieval.
arXiv Detail & Related papers (2020-04-27T15:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.