Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence
- URL: http://arxiv.org/abs/2305.03507v1
- Date: Tue, 2 May 2023 03:23:14 GMT
- Title: Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence
- Authors: Xuming Hu, Zhaochen Hong, Zhijiang Guo, Lijie Wen, Philip S. Yu
- Abstract summary: We propose a fact verification model named ReRead to retrieve evidence and verify claim.
The proposed system is able to achieve significant improvements upon best-reported models under different settings.
- Score: 59.81749318292707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world fact verification task aims to verify the factuality of a claim by
retrieving evidence from the source document. The quality of the retrieved
evidence plays an important role in claim verification. Ideally, the retrieved
evidence should be faithful (reflecting the model's decision-making process in
claim verification) and plausible (convincing to humans), and can improve the
accuracy of verification task. Although existing approaches leverage the
similarity measure of semantic or surface form between claims and documents to
retrieve evidence, they all rely on certain heuristics that prevent them from
satisfying all three requirements. In light of this, we propose a fact
verification model named ReRead to retrieve evidence and verify claim that: (1)
Train the evidence retriever to obtain interpretable evidence (i.e.,
faithfulness and plausibility criteria); (2) Train the claim verifier to
revisit the evidence retrieved by the optimized evidence retriever to improve
the accuracy. The proposed system is able to achieve significant improvements
upon best-reported models under different settings.
Related papers
- Robust Claim Verification Through Fact Detection [17.29665711917281]
Our novel approach, FactDetect, leverages Large Language Models (LLMs) to generate concise factual statements from evidence.
The generated facts are then combined with the claim and evidence.
Our method demonstrates competitive results in the supervised claim verification model by 15% on the F1 score.
arXiv Detail & Related papers (2024-07-25T20:03:43Z) - RU22Fact: Optimizing Evidence for Multilingual Explainable Fact-Checking on Russia-Ukraine Conflict [34.2739191920746]
High-quality evidence plays a vital role in enhancing fact-checking systems.
We propose a method based on a Large Language Model to automatically retrieve and summarize evidence from the Web.
We construct RU22Fact, a novel explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples.
arXiv Detail & Related papers (2024-03-25T11:56:29Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - Complex Claim Verification with Evidence Retrieved in the Wild [73.19998942259073]
We present the first fully automated pipeline to check real-world claims by retrieving raw evidence from the web.
Our pipeline includes five components: claim decomposition, raw document retrieval, fine-grained evidence retrieval, claim-focused summarization, and veracity judgment.
arXiv Detail & Related papers (2023-05-19T17:49:19Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
We propose a novel topic-aware evidence reasoning and stance-aware aggregation model for fact verification.
Tests conducted on two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification.
arXiv Detail & Related papers (2021-06-02T14:33:12Z) - AmbiFC: Fact-Checking Ambiguous Claims with Evidence [57.7091560922174]
We present AmbiFC, a fact-checking dataset with 10k claims derived from real-world information needs.
We analyze disagreements arising from ambiguity when comparing claims against evidence in AmbiFC.
We develop models for predicting veracity handling this ambiguity via soft labels.
arXiv Detail & Related papers (2021-04-01T17:40:08Z) - Hierarchical Evidence Set Modeling for Automated Fact Extraction and
Verification [5.836068916903788]
Hierarchical Evidence Set Modeling (HESM) is a framework to extract evidence sets and verify a claim to be supported, refuted or not enough info.
Our experimental results show that HESM outperforms 7 state-of-the-art methods for fact extraction and claim verification.
arXiv Detail & Related papers (2020-10-10T22:27:17Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.