論文の概要: Machine Learning Applications in Misuse and Anomaly Detection
- arxiv url: http://arxiv.org/abs/2009.06709v1
- Date: Thu, 10 Sep 2020 19:52:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 03:53:14.838634
- Title: Machine Learning Applications in Misuse and Anomaly Detection
- Title(参考訳): 誤用と異常検出における機械学習応用
- Authors: Jaydip Sen and Sidra Mehtab
- Abstract要約: 機械学習とデータマイニングアルゴリズムは侵入検知システムの設計において重要な役割を果たす。
ネットワークにおける攻撃検知に対する彼らのアプローチに基づいて、侵入検知システムは2つのタイプに大別できる。
誤用検知システムにおいて、ネットワーク内のアクティビティのシーケンスが既知のアタックシグネチャと一致する場合、システム内のアタックを検出する。
一方, 異常検出手法では, システム内の異常状態は, システムの状態遷移と正常状態との有意差に基づいて同定される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning and data mining algorithms play important roles in designing
intrusion detection systems. Based on their approaches toward the detection of
attacks in a network, intrusion detection systems can be broadly categorized
into two types. In the misuse detection systems, an attack in a system is
detected whenever the sequence of activities in the network matches with a
known attack signature. In the anomaly detection approach, on the other hand,
anomalous states in a system are identified based on a significant difference
in the state transitions of the system from its normal states. This chapter
presents a comprehensive discussion on some of the existing schemes of
intrusion detection based on misuse detection, anomaly detection and hybrid
detection approaches. Some future directions of research in the design of
algorithms for intrusion detection are also identified.
- Abstract(参考訳): 機械学習とデータマイニングアルゴリズムは侵入検知システムの設計において重要な役割を果たす。
ネットワークにおける攻撃検知に対する彼らのアプローチに基づいて、侵入検知システムは2つのタイプに大別できる。
誤用検知システムにおいて、ネットワーク内のアクティビティのシーケンスが既知のアタックシグネチャと一致する場合、システム内のアタックを検出する。
一方、異常検出手法では、システム内の異常状態は、システムの状態遷移と正常状態との有意差に基づいて同定される。
本章では, 誤用検出, 異常検出, ハイブリッド検出手法に基づく侵入検知の既存手法について, 包括的考察を行う。
侵入検知アルゴリズムの設計に関する今後の研究の方向性も明らかにされている。
関連論文リスト
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - TAD: Transfer Learning-based Multi-Adversarial Detection of Evasion
Attacks against Network Intrusion Detection Systems [0.7829352305480285]
我々は、侵入検知のための既存の最先端モデルを実装している。
次に、選択した回避攻撃のセットでこれらのモデルを攻撃します。
これらの敵攻撃を検知するために、我々は複数の移動学習に基づく敵検知器を設計、実装する。
論文 参考訳(メタデータ) (2022-10-27T18:02:58Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
本稿では,機械学習による侵入検知システムに対する敵ネットワークトラフィックの転送可能性について検討する。
本研究では,機械学習による侵入検知システムに対する対向的ネットワークトラフィックの転送可能性特性の影響を抑えるための防御機構として検出・削除を検討した。
論文 参考訳(メタデータ) (2021-12-22T17:54:54Z) - Orthogonal variance-based feature selection for intrusion detection
systems [0.0]
自動侵入検知システムを構築するために,融合機械学習手法を適用した。
選択された機能は、侵入検知のためのディープニューラルネットワークを構築するために使用される。
提案アルゴリズムは、DDoS攻撃の特定において100%検出精度を達成する。
論文 参考訳(メタデータ) (2021-10-25T04:07:53Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - Few-shot Network Anomaly Detection via Cross-network Meta-learning [45.8111239825361]
GDN(Graph Deviation Networks)という新しいタイプのグラフニューラルネットワークを提案します。
GDNは少数のラベル付き異常を利用して、ネットワーク上の異常ノードと正常ノードの間に統計的に有意なずれを生じさせる。
提案したGDNを新しいクロスネットワークメタラーニングアルゴリズムで実装し,マルチショットネットワーク異常検出を実現した。
論文 参考訳(メタデータ) (2021-02-22T16:42:37Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。