論文の概要: Controllable neural text-to-speech synthesis using intuitive prosodic
features
- arxiv url: http://arxiv.org/abs/2009.06775v1
- Date: Mon, 14 Sep 2020 22:37:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 11:48:53.902448
- Title: Controllable neural text-to-speech synthesis using intuitive prosodic
features
- Title(参考訳): 直感的韻律特徴を用いた制御可能なニューラルテキスト音声合成
- Authors: Tuomo Raitio, Ramya Rasipuram, Dan Castellani
- Abstract要約: 音響音声の特徴に基づくシーケンス・ツー・シーケンスニューラルネットワークを訓練し、直感的かつ有意義な次元を持つ潜在韻律空間を学習する。
実験により, 音程, ピッチ範囲, 持続時間, エネルギー, スペクトル傾きのモデルが各韻律次元を効果的に制御し, 多様な発話スタイルを生成できることが示唆された。
- 参考スコア(独自算出の注目度): 3.709803838880226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural text-to-speech (TTS) synthesis can generate speech that is
indistinguishable from natural speech. However, the prosody of generated
utterances often represents the average prosodic style of the database instead
of having wide prosodic variation. Moreover, the generated prosody is solely
defined by the input text, which does not allow for different styles for the
same sentence. In this work, we train a sequence-to-sequence neural network
conditioned on acoustic speech features to learn a latent prosody space with
intuitive and meaningful dimensions. Experiments show that a model conditioned
on sentence-wise pitch, pitch range, phone duration, energy, and spectral tilt
can effectively control each prosodic dimension and generate a wide variety of
speaking styles, while maintaining similar mean opinion score (4.23) to our
Tacotron baseline (4.26).
- Abstract(参考訳): 現代のニューラルテキスト音声合成(TTS)は、自然な音声と区別できない音声を生成することができる。
しかし、生成した発話の韻律は、広範囲な韻律変化ではなく、データベースの平均韻律スタイルを表すことが多い。
さらに、生成された韻律は入力テキストによってのみ定義され、同じ文に対して異なるスタイルを許さない。
本研究では,音声特徴量に基づくシーケンス-シーケンス間ニューラルネットワークを訓練し,直観的かつ有意義な次元で潜在的韻律空間を学習する。
実験により,各韻律次元を効果的に制御し,多種多様な話し方を生成するとともに,タコトロンベースライン(4.26)に類似した平均意見スコア(4.23)を維持できることがわかった。
関連論文リスト
- Spontaneous Style Text-to-Speech Synthesis with Controllable Spontaneous Behaviors Based on Language Models [55.898594710420326]
本稿では,言語モデルに基づく新たな自然音声合成システムを提案する。
自発音声における微妙な韻律変化を捉えるモデルの能力を高めるために, きめ細かい韻律モデリングを導入する。
論文 参考訳(メタデータ) (2024-07-18T13:42:38Z) - NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models [127.47252277138708]
ゼロショット方式で自然な音声を生成するために,分解拡散モデルを備えたTSSシステムであるNaturalSpeech 3を提案する。
具体的には、分解ベクトル量子化(FVQ)を用いて、音声波形をコンテンツ、韻律、音色、音響的詳細の部分空間に分解する。
実験により、NaturalSpeech 3は、品質、類似性、韻律、知性において最先端のTSSシステムより優れていることが示された。
論文 参考訳(メタデータ) (2024-03-05T16:35:25Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
テキストなし音声合成のための高品質な表現型音声データセットであるExpressoを紹介する。
このデータセットは、26の自発的表現スタイルで描画された読み上げ音声と即興対話の両方を含む。
自己監督型離散エンコーダの自動計測値を用いて再生品質を評価する。
論文 参考訳(メタデータ) (2023-08-10T17:41:19Z) - Visual-Aware Text-to-Speech [101.89332968344102]
テキスト入力と対面コミュニケーションにおけるリスナーの視覚的フィードバックの両方で条件付き音声を合成する新しい視覚認識型音声合成(VA-TTS)タスクを提案する。
音声合成のための音素言語情報とリスナー視覚信号を融合するベースラインモデルを提案する。
論文 参考訳(メタデータ) (2023-06-21T05:11:39Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
残差ベクトル化器を備えたニューラルオーディオ予測器を応用して量子化潜在ベクトルを得るTSシステムであるNaturalSpeech 2を開発した。
本研究では,NaturalSpeech 2を44K時間の音声・歌唱データを持つ大規模データセットに拡張し,未知話者の音声品質を評価する。
NaturalSpeech 2は、0ショット設定で、韻律/音節の類似性、合成、音声品質の点で、従来のTSシステムよりはるかに優れている。
論文 参考訳(メタデータ) (2023-04-18T16:31:59Z) - Prosody-controllable spontaneous TTS with neural HMMs [11.472325158964646]
小型で不規則なデータセットから素早く学習できるTSアーキテクチャを提案する。
我々は既存のニューラルHMMベースのTSシステムに発話レベルの韻律制御を加える。
本研究では,2種類の難聴音声を合成するシステムの性能を評価する。
論文 参考訳(メタデータ) (2022-11-24T11:06:11Z) - Emphasis control for parallel neural TTS [8.039245267912511]
音声信号によって伝達される意味情報は、韻律の局所的な変化に強く影響される。
近年のパラレル・ニューラルテキスト・トゥ・音声(TTS)法は,高性能を維持しつつ高い忠実度で音声を生成することができる。
本稿では,重心変化に対応する潜在空間を学習することにより,韻律強調制御のための階層型並列型ニューラルネットワークTSシステムを提案する。
論文 参考訳(メタデータ) (2021-10-06T18:45:39Z) - Hierarchical prosody modeling and control in non-autoregressive parallel
neural TTS [7.531331499935223]
我々は、粗大できめの細かい音声特徴に基づいて、非自己回帰型並列型TTSモデルを階層的に訓練する。
実験により, 音声のピッチ, ピッチ範囲, 時間, エネルギー, スペクトル傾きに階層的に調和した非自己回帰的TSモデルが各韻律次元を効果的に制御できることが示された。
論文 参考訳(メタデータ) (2021-10-06T17:58:42Z) - Ctrl-P: Temporal Control of Prosodic Variation for Speech Synthesis [68.76620947298595]
テキストは音声形式を完全には規定しないので、テキストから音声へのモデルは、対応するテキストで説明されない方法で異なる音声データから学習できなければならない。
韻律の3つの一次音響相関に明示的に条件付けされた音声を生成するモデルを提案する。
論文 参考訳(メタデータ) (2021-06-15T18:03:48Z) - Few Shot Adaptive Normalization Driven Multi-Speaker Speech Synthesis [18.812696623555855]
複数発話音声合成手法 (FSM-SS) を提案する。
FSM-SSは、未確認者の入力テキストと参照音声サンプルから、その人のスタイルで数ショットで音声を生成することができる。
正規化のアフィンパラメータがエネルギーや基本周波数などの韻律的特徴を捉えるのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-12-14T04:37:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。