論文の概要: Emphasis control for parallel neural TTS
- arxiv url: http://arxiv.org/abs/2110.03012v1
- Date: Wed, 6 Oct 2021 18:45:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 15:38:27.673343
- Title: Emphasis control for parallel neural TTS
- Title(参考訳): 並列型ニューラルTSにおける強調制御
- Authors: Shreyas Seshadri, Tuomo Raitio, Dan Castellani, Jiangchuan Li
- Abstract要約: 音声信号によって伝達される意味情報は、韻律の局所的な変化に強く影響される。
近年のパラレル・ニューラルテキスト・トゥ・音声(TTS)法は,高性能を維持しつつ高い忠実度で音声を生成することができる。
本稿では,重心変化に対応する潜在空間を学習することにより,韻律強調制御のための階層型並列型ニューラルネットワークTSシステムを提案する。
- 参考スコア(独自算出の注目度): 8.039245267912511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The semantic information conveyed by a speech signal is strongly influenced
by local variations in prosody. Recent parallel neural text-to-speech (TTS)
synthesis methods are able to generate speech with high fidelity while
maintaining high performance. However, these systems often lack simple control
over the output prosody, thus restricting the semantic information conveyable
for a given text. This paper proposes a hierarchical parallel neural TTS system
for prosodic emphasis control by learning a latent space that directly
corresponds to a change in emphasis. Three candidate features for the latent
space are compared: 1) Variance of pitch and duration within words in a
sentence, 2) a wavelet based feature computed from pitch, energy, and duration
and 3) a learned combination of the above features. Objective measures reveal
that the proposed methods are able to achieve a wide range of emphasis
modification, and subjective evaluations on the degree of emphasis and the
overall quality indicate that they show promise for real-world applications.
- Abstract(参考訳): 音声信号によって伝達される意味情報は、韻律の局所的な変化に強く影響される。
最近の並列ニューラルテキスト音声合成法は,高性能を維持しつつ高い忠実度で音声を生成することができる。
しかし、これらのシステムは、しばしば出力の韻律に対する単純な制御を欠いているため、与えられたテキストに対して伝達可能な意味情報を制限している。
本稿では,強調の変化に直接対応する潜在空間を学習することにより,韻律強調制御のための階層型並列ニューラルネットワークttsシステムを提案する。
潜在空間の3つの候補特徴を比較する。
1)文中の単語内のピッチと持続時間の変化
2)ピッチ,エネルギー,持続時間から算出したウェーブレットに基づく特徴
3)上記の特徴の学習された組み合わせ。
客観的な測定により,提案手法は広範囲の強調強調修正を達成できることが明らかとなり,主観的評価の度合いと全体的な品質は,実世界のアプリケーションに期待できることを示す。
関連論文リスト
- NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models [127.47252277138708]
ゼロショット方式で自然な音声を生成するために,分解拡散モデルを備えたTSSシステムであるNaturalSpeech 3を提案する。
具体的には、分解ベクトル量子化(FVQ)を用いて、音声波形をコンテンツ、韻律、音色、音響的詳細の部分空間に分解する。
実験により、NaturalSpeech 3は、品質、類似性、韻律、知性において最先端のTSSシステムより優れていることが示された。
論文 参考訳(メタデータ) (2024-03-05T16:35:25Z) - Utilizing Neural Transducers for Two-Stage Text-to-Speech via Semantic
Token Prediction [15.72317249204736]
本稿では,ニューラルトランスデューサを中心とした新しいテキスト音声合成(TTS)フレームワークを提案する。
提案手法では,TSパイプライン全体をセマンティックレベルのシーケンス・ツー・シーケンス・モデリング(seq2seq)ときめ細かな音響モデルステージに分割する。
ゼロショット適応型TS実験の結果,音声品質と話者類似度の観点から,モデルがベースラインを超えていることが判明した。
論文 参考訳(メタデータ) (2024-01-03T02:03:36Z) - Transduce and Speak: Neural Transducer for Text-to-Speech with Semantic
Token Prediction [14.661123738628772]
本稿では,ニューラルトランスデューサに基づくテキスト音声合成(TTS)フレームワークを提案する。
We use discretized semantic tokens acquired from wav2vec2.0 embeddeddings, which makes it easy to adopt a neural transducer for the TTS framework enjoy its monotonic alignment constraints。
論文 参考訳(メタデータ) (2023-11-06T06:13:39Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - Controllable speech synthesis by learning discrete phoneme-level
prosodic representations [53.926969174260705]
直感的な離散ラベルを用いたF0と持続時間に対する音素レベル韻律制御のための新しい手法を提案する。
複数話者音声データセットから音素レベルF0と持続時間の特徴を識別するために用いられる教師なし韻律クラスタリングプロセスを提案する。
論文 参考訳(メタデータ) (2022-11-29T15:43:36Z) - Controllable Accented Text-to-Speech Synthesis [76.80549143755242]
我々は、推論中にアクセントとその強度を制御できるニューラルネットワークTSアーキテクチャを提案する。
これは、明示的な強度制御を伴うアクセント付きTS合成の最初の研究である。
論文 参考訳(メタデータ) (2022-09-22T06:13:07Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeechは、両側摂動を伴う音声から音声への翻訳モデルである。
我々は,非自己回帰S2ST手法を構築し,繰り返しマスキングを行い,単位選択を予測する。
TranSpeechは推論遅延を大幅に改善し、自動回帰技術よりも最大21.4倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2022-05-25T06:34:14Z) - Hierarchical prosody modeling and control in non-autoregressive parallel
neural TTS [7.531331499935223]
我々は、粗大できめの細かい音声特徴に基づいて、非自己回帰型並列型TTSモデルを階層的に訓練する。
実験により, 音声のピッチ, ピッチ範囲, 時間, エネルギー, スペクトル傾きに階層的に調和した非自己回帰的TSモデルが各韻律次元を効果的に制御できることが示された。
論文 参考訳(メタデータ) (2021-10-06T17:58:42Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
論文 参考訳(メタデータ) (2021-06-25T07:51:35Z) - Controllable neural text-to-speech synthesis using intuitive prosodic
features [3.709803838880226]
音響音声の特徴に基づくシーケンス・ツー・シーケンスニューラルネットワークを訓練し、直感的かつ有意義な次元を持つ潜在韻律空間を学習する。
実験により, 音程, ピッチ範囲, 持続時間, エネルギー, スペクトル傾きのモデルが各韻律次元を効果的に制御し, 多様な発話スタイルを生成できることが示唆された。
論文 参考訳(メタデータ) (2020-09-14T22:37:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。