Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems
- URL: http://arxiv.org/abs/2009.06825v1
- Date: Tue, 15 Sep 2020 02:01:47 GMT
- Title: Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems
- Authors: Peyman Tehrani, Marco Levorato
- Abstract summary: We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
- Score: 6.4332733596587115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prompt and accurate detection of faults and abnormalities in electric
transmission lines is a critical challenge in smart grid systems. Existing
methods mostly rely on model-based approaches, which may not capture all the
aspects of these complex temporal series. Recently, the availability of data
sets collected using advanced metering devices, such as Micro-Phasor
Measurement units ($\mu$ PMU), which provide measurements at microsecond
timescale, boosted the development of data-driven methodologies. In this paper,
we introduce a novel deep learning-based approach for fault detection and test
it on a real data set, namely, the Kaggle platform for a partial discharge
detection task. Our solution adopts a Long-Short Term Memory architecture with
attention mechanism to extract time series features, and uses a
1D-Convolutional Neural Network structure to exploit frequency information of
the signal for prediction. Additionally, we propose an unsupervised method to
cluster signals based on their frequency components, and apply multi task
learning on different clusters. The method we propose outperforms the winner
solutions in the Kaggle competition and other state of the art methods in many
performance metrics, and improves the interpretability of analysis.
Related papers
- Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - Machine Learning in Short-Reach Optical Systems: A Comprehensive Survey [2.425630641479336]
This paper outlines the application of machine learning techniques in short-reach communications.
We introduce a novel taxonomy for time-series methods employed in machine learning signal processing.
We aim to pave the way for more practical and efficient deployment of machine learning approaches in short-reach optical communication systems.
arXiv Detail & Related papers (2024-05-02T16:04:30Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Unsupervised Learning for Fault Detection of HVAC Systems: An OPTICS
-based Approach for Terminal Air Handling Units [1.0878040851638]
This study introduces an unsupervised learning strategy to detect faults in terminal air handling units and their associated systems.
The methodology involves pre-processing historical sensor data using Principal Component Analysis to streamline dimensions.
Results showed that OPTICS consistently surpassed k-means in accuracy across seasons.
arXiv Detail & Related papers (2023-12-18T18:08:54Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.