Multi-scale Attention U-Net (MsAUNet): A Modified U-Net Architecture for
Scene Segmentation
- URL: http://arxiv.org/abs/2009.06911v1
- Date: Tue, 15 Sep 2020 08:03:41 GMT
- Title: Multi-scale Attention U-Net (MsAUNet): A Modified U-Net Architecture for
Scene Segmentation
- Authors: Soham Chattopadhyay, Hritam Basak
- Abstract summary: We propose a novel multi-scale attention network for scene segmentation by using contextual information from an image.
This network can map local features with their global counterparts with improved accuracy and emphasize on discriminative image regions.
We have evaluated our model on two standard datasets named PascalVOC2012 and ADE20k.
- Score: 1.713291434132985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the growing success of Convolution neural networks (CNN) in the
recent past in the task of scene segmentation, the standard models lack some of
the important features that might result in sub-optimal segmentation outputs.
The widely used encoder-decoder architecture extracts and uses several
redundant and low-level features at different steps and different scales. Also,
these networks fail to map the long-range dependencies of local features, which
results in discriminative feature maps corresponding to each semantic class in
the resulting segmented image. In this paper, we propose a novel multi-scale
attention network for scene segmentation purposes by using the rich contextual
information from an image. Different from the original UNet architecture we
have used attention gates which take the features from the encoder and the
output of the pyramid pool as input and produced out-put is further
concatenated with the up-sampled output of the previous pyramid-pool layer and
mapped to the next subsequent layer. This network can map local features with
their global counterparts with improved accuracy and emphasize on
discriminative image regions by focusing on relevant local features only. We
also propose a compound loss function by optimizing the IoU loss and fusing
Dice Loss and Weighted Cross-entropy loss with it to achieve an optimal
solution at a faster convergence rate. We have evaluated our model on two
standard datasets named PascalVOC2012 and ADE20k and was able to achieve mean
IoU of 79.88% and 44.88% on the two datasets respectively, and compared our
result with the widely known models to prove the superiority of our model over
them.
Related papers
- SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - Global Filter Networks for Image Classification [90.81352483076323]
We present a conceptually simple yet computationally efficient architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity.
Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness.
arXiv Detail & Related papers (2021-07-01T17:58:16Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
We propose a novel synergistic design that can optimally balance these competing goals.
Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs.
The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets.
arXiv Detail & Related papers (2021-02-04T18:57:07Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
Boundary-Aware Network (BASNet) is integrated with a predict-refine architecture and a hybrid loss for highly accurate image segmentation.
BASNet runs at over 70 fps on a single GPU which benefits many potential real applications.
Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is augmented reality for "COPY" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal.
arXiv Detail & Related papers (2021-01-12T19:20:26Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks [28.32775611169636]
We introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation.
A novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features.
Our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU)
arXiv Detail & Related papers (2020-08-10T11:00:19Z) - MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed
Images [11.047174552053626]
MACU-Net is a multi-scale skip connected and asymmetric-convolution-based U-Net for fine-resolution remotely sensed images.
Our design has the following advantages: (1) The multi-scale skip connections combine and realign semantic features contained in both low-level and high-level feature maps; (2) the asymmetric convolution block strengthens the feature representation and feature extraction capability of a standard convolution layer.
Experiments conducted on two remotely sensed datasets demonstrate that the proposed MACU-Net transcends the U-Net, U-NetPPL, U-Net 3+, amongst other benchmark approaches.
arXiv Detail & Related papers (2020-07-26T08:56:47Z) - On the Texture Bias for Few-Shot CNN Segmentation [21.349705243254423]
Convolutional Neural Networks (CNNs) are driven by shapes to perform visual recognition tasks.
Recent evidence suggests texture bias in CNNs provides higher performing models when learning on large labeled training datasets.
We propose a novel architecture that integrates a set of Difference of Gaussians (DoG) to attenuate high-frequency local components in the feature space.
arXiv Detail & Related papers (2020-03-09T11:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.