論文の概要: The Devil is the Classifier: Investigating Long Tail Relation
Classification with Decoupling Analysis
- arxiv url: http://arxiv.org/abs/2009.07022v1
- Date: Tue, 15 Sep 2020 12:47:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 05:11:51.572526
- Title: The Devil is the Classifier: Investigating Long Tail Relation
Classification with Decoupling Analysis
- Title(参考訳): Devil is the Classificationifier: Investigationing Long Tail Relation Classification with Decoupling Analysis
- Authors: Haiyang Yu, Ningyu Zhang, Shumin Deng, Zonggang Yuan, Yantao Jia,
Huajun Chen
- Abstract要約: ロングテール関係分類は、ヘッドクラスがトレーニングフェーズを支配しているため、難しい問題である。
そこで本研究では,関係を自動的に集約することで,ソフトウェイトを割り当てる,注意関係ルーティング付きロバストな分類器を提案する。
- 参考スコア(独自算出の注目度): 36.298869931803836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-tailed relation classification is a challenging problem as the head
classes may dominate the training phase, thereby leading to the deterioration
of the tail performance. Existing solutions usually address this issue via
class-balancing strategies, e.g., data re-sampling and loss re-weighting, but
all these methods adhere to the schema of entangling learning of the
representation and classifier. In this study, we conduct an in-depth empirical
investigation into the long-tailed problem and found that pre-trained models
with instance-balanced sampling already capture the well-learned
representations for all classes; moreover, it is possible to achieve better
long-tailed classification ability at low cost by only adjusting the
classifier. Inspired by this observation, we propose a robust classifier with
attentive relation routing, which assigns soft weights by automatically
aggregating the relations. Extensive experiments on two datasets demonstrate
the effectiveness of our proposed approach. Code and datasets are available in
https://github.com/zjunlp/deepke.
- Abstract(参考訳): ロングテール関係分類は、ヘッドクラスがトレーニングフェーズを支配する可能性があるため、テールパフォーマンスの低下につながるため、難しい問題である。
既存のソリューションは通常、データ再サンプリングや損失再重み付けといったクラスバランス戦略を通じてこの問題に対処するが、これらの手法はすべて表現と分類器の密接な学習のスキーマに従う。
本研究は,ロングテール問題に関する詳細な実証実験を行い,インスタンスバランスサンプリングを用いた事前学習モデルが,すべてのクラスで十分に学習された表現を既に捉えていることを見出し,さらに,分類器を調整するだけで,より低コストでロングテールの分類能力を向上できることを示す。
この観測にインスピレーションを得て,関係を自動的に集約することでソフトウェイトを割り当てる,注意関係ルーティング付きロバストな分類器を提案する。
2つのデータセットに関する広範な実験により,提案手法の有効性が示された。
コードとデータセットはhttps://github.com/zjunlp/deepke.comで入手できる。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - How Re-sampling Helps for Long-Tail Learning? [45.187004699024435]
ロングテール学習は、極めて不均衡なデータセットで発生する課題のために、大きな注目を集めている。
最近の研究では、リサンプリングは現代のロングテール学習タスクにおいて無視できるパフォーマンス改善をもたらすと主張している。
そこで本稿では,末尾クラスのための多様なトレーニング画像を生成するコンテキストシフト拡張モジュールを提案する。
論文 参考訳(メタデータ) (2023-10-27T16:20:34Z) - Adjusting Logit in Gaussian Form for Long-Tailed Visual Recognition [37.62659619941791]
特徴レベルの観点から、長い尾の視覚認識の問題について検討する。
2つの新しいロジット調整法が提案され,計算オーバーヘッドの緩やかなモデル性能が向上した。
ベンチマークデータセットを用いて行った実験は,提案手法の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-18T02:06:06Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
多数派(頭)クラスと少数派(尾)クラスの不均衡は、データ駆動のディープニューラルネットワークを著しく歪ませる。
従来の手法では、データ分散、特徴空間、モデル設計の観点からデータ不均衡に対処していた。
ラベル空間を段階的に調整し,ヘッドクラスとテールクラスを分割することで,簡潔なパラダイムを提案する。
提案モデルでは,特徴評価手法も提供し,長期的特徴学習の道を開く。
論文 参考訳(メタデータ) (2022-08-04T10:22:24Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Overcoming Classifier Imbalance for Long-tail Object Detection with
Balanced Group Softmax [88.11979569564427]
本報告では, 長期分布前における最先端モデルの過小評価に関する最初の体系的解析を行う。
本稿では,グループワイドトレーニングを通じて検出フレームワーク内の分類器のバランスをとるための,新しいバランス付きグループソフトマックス(BAGS)モジュールを提案する。
非常に最近の長尾大語彙オブジェクト認識ベンチマークLVISの大規模な実験により,提案したBAGSは検出器の性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2020-06-18T10:24:26Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
本稿では,多様な分類器の強度を組み合わせたクラスバランスの専門家のアンサンブルを提案する。
私たちのクラスバランスの専門家のアンサンブルは、最先端に近い結果に到達し、長い尾の認識のための2つのベンチマークで新たな最先端のアンサンブルを確立します。
論文 参考訳(メタデータ) (2020-04-07T20:57:44Z) - Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition
from a Domain Adaptation Perspective [98.70226503904402]
現実世界のオブジェクトの周波数は、しばしば電力法則に従い、長い尾のクラス分布を持つデータセット間のミスマッチを引き起こす。
メタラーニング手法を用いて,クラス条件分布の違いを明示的に推定し,古典的なクラスバランス学習を強化することを提案する。
論文 参考訳(メタデータ) (2020-03-24T11:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。