論文の概要: Constructing Balance from Imbalance for Long-tailed Image Recognition
- arxiv url: http://arxiv.org/abs/2208.02567v1
- Date: Thu, 4 Aug 2022 10:22:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 12:23:29.866252
- Title: Constructing Balance from Imbalance for Long-tailed Image Recognition
- Title(参考訳): 長距離画像認識のための不均衡からのバランス構築
- Authors: Yue Xu, Yong-Lu Li, Jiefeng Li, Cewu Lu
- Abstract要約: 多数派(頭)クラスと少数派(尾)クラスの不均衡は、データ駆動のディープニューラルネットワークを著しく歪ませる。
従来の手法では、データ分散、特徴空間、モデル設計の観点からデータ不均衡に対処していた。
ラベル空間を段階的に調整し,ヘッドクラスとテールクラスを分割することで,簡潔なパラダイムを提案する。
提案モデルでは,特徴評価手法も提供し,長期的特徴学習の道を開く。
- 参考スコア(独自算出の注目度): 50.6210415377178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-tailed image recognition presents massive challenges to deep learning
systems since the imbalance between majority (head) classes and minority (tail)
classes severely skews the data-driven deep neural networks. Previous methods
tackle with data imbalance from the viewpoints of data distribution, feature
space, and model design, etc.In this work, instead of directly learning a
recognition model, we suggest confronting the bottleneck of head-to-tail bias
before classifier learning, from the previously omitted perspective of
balancing label space. To alleviate the head-to-tail bias, we propose a concise
paradigm by progressively adjusting label space and dividing the head classes
and tail classes, dynamically constructing balance from imbalance to facilitate
the classification. With flexible data filtering and label space mapping, we
can easily embed our approach to most classification models, especially the
decoupled training methods. Besides, we find the separability of head-tail
classes varies among different features with different inductive biases. Hence,
our proposed model also provides a feature evaluation method and paves the way
for long-tailed feature learning. Extensive experiments show that our method
can boost the performance of state-of-the-arts of different types on
widely-used benchmarks. Code is available at https://github.com/silicx/DLSA.
- Abstract(参考訳): 長い尾の画像認識は、多数派(頭)クラスと少数派(尾)クラスの不均衡が、データ駆動のディープニューラルネットワークを著しく歪ませるため、ディープラーニングシステムに大きな課題をもたらす。
従来の手法では,データ分布,特徴空間,モデル設計などの観点からデータの不均衡に取り組むが,本研究では,認識モデルを直接学習する代わりに,ラベル空間のバランスを省略した観点から,識別学習前の頭部間バイアスのボトルネックに立ち向かうことを提案する。
ラベル空間を段階的に調整し,ヘッドクラスとテールクラスを分割し,不均衡からバランスを動的に構築し,分類を容易にする,簡潔なパラダイムを提案する。
フレキシブルなデータフィルタリングとラベル空間マッピングにより、ほとんどの分類モデル、特に分離されたトレーニング手法に容易にアプローチを組み込むことができます。
さらに、ヘッドテールクラスの分離性は、誘導バイアスの異なる異なる特徴によって異なることが分かる。
したがって,提案モデルでは特徴評価手法も提供し,長期的特徴学習の道を開く。
広範に使用されているベンチマークにおいて,本手法は様々なタイプの最先端技術の性能を向上させることができることを示す。
コードはhttps://github.com/silicx/dlsaで入手できる。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - RAHNet: Retrieval Augmented Hybrid Network for Long-tailed Graph
Classification [10.806893809269074]
本稿では,ロバストな特徴抽出器と非バイアスな分類器を共同で学習するRAHNet(Retrieval Augmented Hybrid Network)を提案する。
特徴抽出学習の段階において,各クラスにおけるクラス内多様性を直接強化する関係グラフを探索するグラフ検索モジュールを開発する。
また、分類表現を得るために、カテゴリー中心の教師付きコントラスト損失を革新的に最適化する。
論文 参考訳(メタデータ) (2023-08-04T14:06:44Z) - Adjusting Logit in Gaussian Form for Long-Tailed Visual Recognition [37.62659619941791]
特徴レベルの観点から、長い尾の視覚認識の問題について検討する。
2つの新しいロジット調整法が提案され,計算オーバーヘッドの緩やかなモデル性能が向上した。
ベンチマークデータセットを用いて行った実験は,提案手法の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-18T02:06:06Z) - Inducing Neural Collapse in Deep Long-tailed Learning [13.242721780822848]
クラス不均衡データの高品質な表現を学習するための2つの明示的な特徴正規化項を提案する。
提案された正規化により、ニューラル崩壊現象はクラス不均衡分布の下に現れる。
本手法は, 実装が容易で, 有効であり, 既存のほとんどの方法に組み込むことができる。
論文 参考訳(メタデータ) (2023-02-24T05:07:05Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
長い尾のインスタンスセグメンテーションは、クラス間のトレーニングサンプルの極端な不均衡のために難しいタスクである。
尾のついたものに対して、(大多数のサンプルを含む)ヘッドクラスの深刻なバイアスを引き起こす。
そこで本研究では,学習中の予測嗜好を蓄積するために,学習中に更新される混乱行列上に構築された新しいPairwise Class Balance(PCB)手法を提案する。
論文 参考訳(メタデータ) (2022-01-08T07:48:36Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Distributional Robustness Loss for Long-tail Learning [20.800627115140465]
現実世界のデータはしばしばアンバランスで長尾ですが、深いモデルは頻繁なクラスの存在下でまれなクラスを認識するのに苦労します。
ディープネットワークの特徴抽出器部分は,このバイアスに大きく悩まされていることを示す。
モデルが頭と尾の両方のクラスで高品質の表現を学ぶことを奨励するロバストネス理論に基づく新しい損失を提案します。
論文 参考訳(メタデータ) (2021-04-07T11:34:04Z) - The Devil is the Classifier: Investigating Long Tail Relation
Classification with Decoupling Analysis [36.298869931803836]
ロングテール関係分類は、ヘッドクラスがトレーニングフェーズを支配しているため、難しい問題である。
そこで本研究では,関係を自動的に集約することで,ソフトウェイトを割り当てる,注意関係ルーティング付きロバストな分類器を提案する。
論文 参考訳(メタデータ) (2020-09-15T12:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。