Hunting for the non-Hermitian exceptional points with fidelity
susceptibility
- URL: http://arxiv.org/abs/2009.07070v2
- Date: Thu, 17 Dec 2020 03:16:45 GMT
- Title: Hunting for the non-Hermitian exceptional points with fidelity
susceptibility
- Authors: Yu-Chin Tzeng, Chia-Yi Ju, Guang-Yin Chen, Wen-Min Huang
- Abstract summary: The fidelity susceptibility has been used to detect quantum phase transitions in the Hermitian quantum many-body systems.
Here the fidelity susceptibility $chi$ is generalized to non-Hermitian quantum systems by taking the geometric structure of the Hilbert space into consideration.
As examples, we investigate the simplest $mathcalPT$ symmetric $2times2$ Hamiltonian with a single tuning parameter and the non-Hermitian Su-Schriffer-Heeger model.
- Score: 1.7205106391379026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fidelity susceptibility has been used to detect quantum phase transitions
in the Hermitian quantum many-body systems over a decade, where the fidelity
susceptibility density approaches $+\infty$ in the thermodynamic limits. Here
the fidelity susceptibility $\chi$ is generalized to non-Hermitian quantum
systems by taking the geometric structure of the Hilbert space into
consideration. Instead of solving the metric equation of motion from scratch,
we chose a gauge where the fidelities are composed of biorthogonal eigenstates
and can be worked out algebraically or numerically when not on the exceptional
point (EP). Due to the properties of the Hilbert space geometry at EP, we found
that EP can be found when $\chi$ approaches $-\infty$. As examples, we
investigate the simplest $\mathcal{PT}$ symmetric $2\times2$ Hamiltonian with a
single tuning parameter and the non-Hermitian Su-Schriffer-Heeger model.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Discrete-coordinate crypto-Hermitian quantum system controlled by
time-dependent Robin boundary conditions [0.0]
unitary quantum mechanics formulated in non-Hermitian (or, more precisely, in hiddenly Hermitian) interaction-picture representation is illustrated via an elementary $N$ by $N$ matrix Hamiltonian $H(t)$ mimicking a 1D-box system with physics controlled by time-dependent boundary conditions.
Our key message is that contrary to the conventional beliefs and in spite of the unitarity of the evolution of the system, neither its "Heisenbergian Hamiltonian" $Sigma(t)$ nor its "Schr"odingerian Hamiltonian" $G(
arXiv Detail & Related papers (2024-01-19T13:28:42Z) - Schrieffer-Wolff transformation for non-Hermitian systems: application
for $\mathcal{PT}$-symmetric circuit QED [0.0]
We develop the generalized Schrieffer-Wolff transformation and derive the effective Hamiltonian suitable for various quasi-degenerate textitnon-Hermitian systems.
We show that non-hermiticity mixes the "dark" and the "bright" states, which has a direct experimental consequence.
arXiv Detail & Related papers (2023-09-18T14:50:29Z) - A New Look at the $C^{0}$-formulation of the Strong Cosmic Censorship
Conjecture [68.8204255655161]
We argue that for generic black hole parameters as initial conditions for Einstein equations, the metric is $C0$-extendable to a larger Lorentzian manifold.
We prove it violates the "complexity=volume" conjecture for a low-temperature hyperbolic AdS$_d+1$ black hole dual to a CFT living on a ($d-1$)-dimensional hyperboloid $H_d-1$.
arXiv Detail & Related papers (2022-06-17T12:14:33Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Quantum phase transitions in nonhermitian harmonic oscillator [0.0]
Stone theorem requires that in a physical Hilbert space $cal H$ the time-evolution of a stable quantum system is unitary.
We show that in the dynamical regime of unavoided level crossings a reconstruction of $cal H$ becomes feasible.
arXiv Detail & Related papers (2020-08-10T10:32:28Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z) - Time-Dependent Pseudo-Hermitian Hamiltonians and a Hidden Geometric
Aspect of Quantum Mechanics [0.0]
A non-Hermitian operator $H$ defined in a Hilbert space with inner product $langlecdot|cdotrangle$ may serve as the Hamiltonian for a unitary quantum system.
Such quantum systems, which are also encountered in the study of quantum mechanics in cosmological backgrounds, suffer from a conflict between the unitarity of time evolution and the unobservability of the Hamiltonian.
arXiv Detail & Related papers (2020-04-10T23:00:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.