MATS: An Interpretable Trajectory Forecasting Representation for
Planning and Control
- URL: http://arxiv.org/abs/2009.07517v2
- Date: Thu, 14 Jan 2021 09:46:46 GMT
- Title: MATS: An Interpretable Trajectory Forecasting Representation for
Planning and Control
- Authors: Boris Ivanovic, Amine Elhafsi, Guy Rosman, Adrien Gaidon, Marco Pavone
- Abstract summary: Reasoning about human motion is a core component of modern human-robot interactive systems.
One of the main uses of behavior prediction in autonomous systems is to inform robot motion planning and control.
We propose a new output representation for trajectory forecasting that is more amenable to downstream planning and control use.
- Score: 46.86174832000696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning about human motion is a core component of modern human-robot
interactive systems. In particular, one of the main uses of behavior prediction
in autonomous systems is to inform robot motion planning and control. However,
a majority of planning and control algorithms reason about system dynamics
rather than the predicted agent tracklets (i.e., ordered sets of waypoints)
that are commonly output by trajectory forecasting methods, which can hinder
their integration. Towards this end, we propose Mixtures of Affine Time-varying
Systems (MATS) as an output representation for trajectory forecasting that is
more amenable to downstream planning and control use. Our approach leverages
successful ideas from probabilistic trajectory forecasting works to learn
dynamical system representations that are well-studied in the planning and
control literature. We integrate our predictions with a proposed multimodal
planning methodology and demonstrate significant computational efficiency
improvements on a large-scale autonomous driving dataset.
Related papers
- PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Interactive Joint Planning for Autonomous Vehicles [19.479300967537675]
In interactive driving scenarios, the actions of one agent greatly influences those of its neighbors.
We present Interactive Joint Planning (IJP) that bridges MPC with learned prediction models.
IJP significantly outperforms the baselines that are either without joint optimization or running sampling-based planning.
arXiv Detail & Related papers (2023-10-27T17:48:25Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments [10.345048137438623]
We introduce a novel trajectory prediction model based on recurrent neural networks (RNN)
We then incorporate the trajectory prediction model into a decentralized model predictive control (MPC) framework for multi-robot collision avoidance.
arXiv Detail & Related papers (2021-02-10T11:11:08Z) - Reactive motion planning with probabilistic safety guarantees [27.91467018272684]
This paper considers the problem of motion planning in environments with multiple uncontrolled agents.
A predictive model of the uncontrolled agents is trained to predict all possible trajectories within a short horizon based on the scenario.
The proposed approach is demonstrated in simulation in a scenario emulating autonomous highway driving.
arXiv Detail & Related papers (2020-11-06T20:37:15Z) - Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable
Semantic Representations [81.05412704590707]
We propose a novel end-to-end learnable network that performs joint perception, prediction and motion planning for self-driving vehicles.
Our network is learned end-to-end from human demonstrations.
arXiv Detail & Related papers (2020-08-13T14:40:46Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.