Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments
- URL: http://arxiv.org/abs/2102.05382v1
- Date: Wed, 10 Feb 2021 11:11:08 GMT
- Title: Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments
- Authors: Hai Zhu, Francisco Martinez Claramunt, Bruno Brito and Javier
Alonso-Mora
- Abstract summary: We introduce a novel trajectory prediction model based on recurrent neural networks (RNN)
We then incorporate the trajectory prediction model into a decentralized model predictive control (MPC) framework for multi-robot collision avoidance.
- Score: 10.345048137438623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a data-driven decentralized trajectory optimization
approach for multi-robot motion planning in dynamic environments. When
navigating in a shared space, each robot needs accurate motion predictions of
neighboring robots to achieve predictive collision avoidance. These motion
predictions can be obtained among robots by sharing their future planned
trajectories with each other via communication. However, such communication may
not be available nor reliable in practice. In this paper, we introduce a novel
trajectory prediction model based on recurrent neural networks (RNN) that can
learn multi-robot motion behaviors from demonstrated trajectories generated
using a centralized sequential planner. The learned model can run efficiently
online for each robot and provide interaction-aware trajectory predictions of
its neighbors based on observations of their history states. We then
incorporate the trajectory prediction model into a decentralized model
predictive control (MPC) framework for multi-robot collision avoidance.
Simulation results show that our decentralized approach can achieve a
comparable level of performance to a centralized planner while being
communication-free and scalable to a large number of robots. We also validate
our approach with a team of quadrotors in real-world experiments.
Related papers
- Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
We introduce goal-conditioned autoregressive models to generate crowd behaviors, capturing intricate interactions among individuals.
The model processes potential robot trajectory samples and predicts the reactions of surrounding individuals, enabling proactive robotic navigation in complex scenarios.
arXiv Detail & Related papers (2024-08-07T14:32:41Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
We present a framework that fuses together the interpretability and flexibility of trajectory optimization (TO) with the predictive power of state-of-the-art human trajectory prediction models.
We demonstrate the efficacy of our approach in a multi-agent scenario whereby a robot is required to safely and efficiently navigate through a crowd of up to ten pedestrians.
arXiv Detail & Related papers (2020-12-02T08:43:36Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - AC-VRNN: Attentive Conditional-VRNN for Multi-Future Trajectory
Prediction [30.61190086847564]
We propose a generative architecture for multi-future trajectory predictions based on Conditional Variational Recurrent Neural Networks (C-VRNNs)
Human interactions are modeled with a graph-based attention mechanism enabling an online attentive hidden state refinement of the recurrent estimation.
arXiv Detail & Related papers (2020-05-17T17:21:23Z) - Path Planning in Dynamic Environments using Generative RNNs and Monte
Carlo Tree Search [11.412720572948086]
State of the art methods for robotic path planning in dynamic environments, such as crowds or traffic, rely on hand crafted motion models for agents.
This paper proposes an integrated path planning framework using generative Recurrent Neural Networks within a Monte Carlo Tree Search (MCTS)
We show that the proposed framework can considerably improve motion prediction accuracy during interactions.
arXiv Detail & Related papers (2020-01-30T22:46:37Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation.
We present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents.
We demonstrate its performance on several challenging real-world trajectory forecasting datasets.
arXiv Detail & Related papers (2020-01-09T16:47:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.