CNTS: Cooperative Network for Time Series
- URL: http://arxiv.org/abs/2302.09800v1
- Date: Mon, 20 Feb 2023 06:55:10 GMT
- Title: CNTS: Cooperative Network for Time Series
- Authors: Jinsheng Yang, Yuanhai Shao, ChunNa Li
- Abstract summary: This paper presents a novel approach for unsupervised anomaly detection called the Cooperative Network Time Series approach.
The central aspect of CNTS is a multi-objective optimization problem, which is solved through a cooperative solution strategy.
Experiments on three real-world datasets demonstrate the state-of-the-art performance of CNTS and confirm the cooperative effectiveness of the detector and reconstructor.
- Score: 7.356583983200323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of deep learning techniques in detecting anomalies in time series
data has been an active area of research with a long history of development and
a variety of approaches. In particular, reconstruction-based unsupervised
anomaly detection methods have gained popularity due to their intuitive
assumptions and low computational requirements. However, these methods are
often susceptible to outliers and do not effectively model anomalies, leading
to suboptimal results. This paper presents a novel approach for unsupervised
anomaly detection, called the Cooperative Network Time Series (CNTS) approach.
The CNTS system consists of two components: a detector and a reconstructor. The
detector is responsible for directly detecting anomalies, while the
reconstructor provides reconstruction information to the detector and updates
its learning based on anomalous information received from the detector. The
central aspect of CNTS is a multi-objective optimization problem, which is
solved through a cooperative solution strategy. Experiments on three real-world
datasets demonstrate the state-of-the-art performance of CNTS and confirm the
cooperative effectiveness of the detector and reconstructor. The source code
for this study is publicly available on GitHub.
Related papers
- DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
We present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection)
It combines DBSCAN and learning-based anomaly detection.
It is shown to reliably detect different types of anomalies in both large and complex datasets.
arXiv Detail & Related papers (2024-05-13T13:47:15Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs)
Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies.
The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process.
arXiv Detail & Related papers (2023-04-16T13:05:39Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Memory-augmented Adversarial Autoencoders for Multivariate Time-series
Anomaly Detection with Deep Reconstruction and Prediction [4.033624665609417]
We propose MemAAE, a novel unsupervised anomaly detection method for time-series.
By jointly training two complementary proxy tasks, reconstruction and prediction, we show that detecting anomalies via multiple tasks obtains superior performance.
MemAAE achieves an overall F1 score of 0.90 on four public datasets, significantly outperforming the best baseline by 0.02.
arXiv Detail & Related papers (2021-10-15T18:29:05Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - CSCAD: Correlation Structure-based Collective Anomaly Detection in
Complex System [11.739889613196619]
We propose a correlation structure-based collective anomaly detection model for high-dimensional anomaly detection problem in large systems.
Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples.
An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples.
arXiv Detail & Related papers (2021-05-30T09:28:25Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.