Graph representation forecasting of patient's medical conditions:
towards a digital twin
- URL: http://arxiv.org/abs/2009.08299v1
- Date: Thu, 17 Sep 2020 13:49:48 GMT
- Title: Graph representation forecasting of patient's medical conditions:
towards a digital twin
- Authors: Pietro Barbiero, Ramon Vi\~nas Torn\'e, Pietro Li\'o
- Abstract summary: We show the results of the investigation of pathological effects of overexpression of ACE2 across different signalling pathways in multiple tissues on cardiovascular functions.
We provide a proof of concept of integrating a large set of composable clinical models using molecular data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: Modern medicine needs to shift from a wait and react, curative
discipline to a preventative, interdisciplinary science aiming at providing
personalised, systemic and precise treatment plans to patients. The aim of this
work is to present how the integration of machine learning approaches with
mechanistic computational modelling could yield a reliable infrastructure to
run probabilistic simulations where the entire organism is considered as a
whole. Methods: We propose a general framework that composes advanced AI
approaches and integrates mathematical modelling in order to provide a
panoramic view over current and future physiological conditions. The proposed
architecture is based on a graph neural network (GNNs) forecasting clinically
relevant endpoints (such as blood pressure) and a generative adversarial
network (GANs) providing a proof of concept of transcriptomic integrability.
Results: We show the results of the investigation of pathological effects of
overexpression of ACE2 across different signalling pathways in multiple tissues
on cardiovascular functions. We provide a proof of concept of integrating a
large set of composable clinical models using molecular data to drive local and
global clinical parameters and derive future trajectories representing the
evolution of the physiological state of the patient. Significance: We argue
that the graph representation of a computational patient has potential to solve
important technological challenges in integrating multiscale computational
modelling with AI. We believe that this work represents a step forward towards
a healthcare digital twin.
Related papers
- Patient-centered data science: an integrative framework for evaluating and predicting clinical outcomes in the digital health era [0.0]
This study proposes a novel, integrative framework for patient-centered data science in the digital health era.
We developed a multidimensional model that combines traditional clinical data with patient-reported outcomes, social determinants of health, and multi-omic data to create comprehensive digital patient representations.
arXiv Detail & Related papers (2024-07-31T02:36:17Z) - Investigation of Customized Medical Decision Algorithms Utilizing Graph Neural Networks [15.04251924479172]
This paper introduces a personalized medical decision algorithm utilizing graph neural network (GNN)
The proposed personalized medical decision algorithm showed significantly superior performance in terms of disease prediction accuracy, treatment effect evaluation and patient risk stratification.
arXiv Detail & Related papers (2024-05-23T04:30:41Z) - Graph AI in Medicine [9.733108180046555]
Graph neural networks (GNNs) process data holistically by viewing modalities as nodes interconnected by their relationships.
GNNs capture information through localized neural transformations defined on graph relationships.
Knowledge graphs can enhance interpretability by aligning model-driven insights with medical knowledge.
arXiv Detail & Related papers (2023-10-20T19:01:01Z) - Digital Twins for Patient Care via Knowledge Graphs and Closed-Form
Continuous-Time Liquid Neural Networks [0.0]
Digital twins are readily gaining traction in industries like manufacturing, supply chain logistics, and civil infrastructure.
The challenge of modeling complex diseases with multimodal patient data and the computational complexities of analyzing it have stifled digital twin adoption in the biomedical vertical.
This paper proposes a novel framework for addressing the barriers to clinical twin modeling created by computational costs and modeling complexities.
arXiv Detail & Related papers (2023-07-08T12:52:31Z) - Modelling Patient Trajectories Using Multimodal Information [0.0]
We propose a solution to model patient trajectories that combines different types of information and considers the temporal aspect of clinical data.
The developed solution was evaluated on two different clinical outcomes, unexpected patient readmission and disease progression.
arXiv Detail & Related papers (2022-09-09T10:20:54Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
We take advantage of the latest computer vision methodologies for generating 3D graphs from camera views.
We then introduce the Multimodal Semantic Graph Scene (MSSG) which aims at providing unified symbolic and semantic representation of surgical procedures.
arXiv Detail & Related papers (2021-06-09T14:35:44Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.