Modelling Patient Trajectories Using Multimodal Information
- URL: http://arxiv.org/abs/2209.04224v1
- Date: Fri, 9 Sep 2022 10:20:54 GMT
- Title: Modelling Patient Trajectories Using Multimodal Information
- Authors: Jo\~ao Figueira Silva and S\'ergio Matos
- Abstract summary: We propose a solution to model patient trajectories that combines different types of information and considers the temporal aspect of clinical data.
The developed solution was evaluated on two different clinical outcomes, unexpected patient readmission and disease progression.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electronic Health Records (EHRs) aggregate diverse information at the patient
level, holding a trajectory representative of the evolution of the patient
health status throughout time. Although this information provides context and
can be leveraged by physicians to monitor patient health and make more accurate
prognoses/diagnoses, patient records can contain information from very long
time spans, which combined with the rapid generation rate of medical data makes
clinical decision making more complex. Patient trajectory modelling can assist
by exploring existing information in a scalable manner, and can contribute in
augmenting health care quality by fostering preventive medicine practices. We
propose a solution to model patient trajectories that combines different types
of information and considers the temporal aspect of clinical data. This
solution leverages two different architectures: one supporting flexible sets of
input features, to convert patient admissions into dense representations; and a
second exploring extracted admission representations in a recurrent-based
architecture, where patient trajectories are processed in sub-sequences using a
sliding window mechanism. The developed solution was evaluated on two different
clinical outcomes, unexpected patient readmission and disease progression,
using the publicly available MIMIC-III clinical database. The results obtained
demonstrate the potential of the first architecture to model readmission and
diagnoses prediction using single patient admissions. While information from
clinical text did not show the discriminative power observed in other existing
works, this may be explained by the need to fine-tune the clinicalBERT model.
Finally, we demonstrate the potential of the sequence-based architecture using
a sliding window mechanism to represent the input data, attaining comparable
performances to other existing solutions.
Related papers
- Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
We propose a novel, interpretable deep-learning framework for predicting unplanned hospital readmissions.
We validate our system on the two predictive tasks of hospital readmission within 30 and 180 days, using real-world data.
arXiv Detail & Related papers (2023-10-16T08:48:52Z) - Digital Twins for Patient Care via Knowledge Graphs and Closed-Form
Continuous-Time Liquid Neural Networks [0.0]
Digital twins are readily gaining traction in industries like manufacturing, supply chain logistics, and civil infrastructure.
The challenge of modeling complex diseases with multimodal patient data and the computational complexities of analyzing it have stifled digital twin adoption in the biomedical vertical.
This paper proposes a novel framework for addressing the barriers to clinical twin modeling created by computational costs and modeling complexities.
arXiv Detail & Related papers (2023-07-08T12:52:31Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
We study differences in model performance and explainability when trained for all patients and one patient at a time.
The results show that patients' demographics has a large impact on the performance and explainability and thus trustworthiness.
arXiv Detail & Related papers (2021-12-20T10:51:04Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
This paper provides the development processes of the severity assessment model using machine learning techniques.
Model only requires basic patients' basic personal data, allowing for them to judge their own severity.
We aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.
arXiv Detail & Related papers (2021-09-18T19:56:27Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
We present the patient histories as temporal sequences of diseases for which embeddings are learned in an unsupervised setup.
The embedding space includes demographic parameters which allow the creation of generalized patient profiles.
The training of such a medical profile model has been performed on a dataset of more than one million patients.
arXiv Detail & Related papers (2021-06-21T13:30:43Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.