Population Mapping in Informal Settlements with High-Resolution
Satellite Imagery and Equitable Ground-Truth
- URL: http://arxiv.org/abs/2009.08410v1
- Date: Thu, 17 Sep 2020 16:37:32 GMT
- Title: Population Mapping in Informal Settlements with High-Resolution
Satellite Imagery and Equitable Ground-Truth
- Authors: Konstantin Klemmer, Godwin Yeboah, Jo\~ao Porto de Albuquerque,
Stephen A Jarvis
- Abstract summary: We propose a generalizable framework for the population estimation of dense, informal settlements in low-income urban areas.
We use equitable ground-truth data, which is gathered in collaboration with local communities.
We propose a gridded population estimation model, enabling flexible and customizable spatial resolutions.
- Score: 1.4414055798999759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a generalizable framework for the population estimation of dense,
informal settlements in low-income urban areas--so called 'slums'--using
high-resolution satellite imagery. Precise population estimates are a crucial
factor for efficient resource allocations by government authorities and NGO's,
for instance in medical emergencies. We utilize equitable ground-truth data,
which is gathered in collaboration with local communities: Through training and
community mapping, the local population contributes their unique domain
knowledge, while also maintaining agency over their data. This practice allows
us to avoid carrying forward potential biases into the modeling pipeline, which
might arise from a less rigorous ground-truthing approach. We contextualize our
approach in respect to the ongoing discussion within the machine learning
community, aiming to make real-world machine learning applications more
inclusive, fair and accountable. Because of the resource intensive ground-truth
generation process, our training data is limited. We propose a gridded
population estimation model, enabling flexible and customizable spatial
resolutions. We test our pipeline on three experimental site in Nigeria,
utilizing pre-trained and fine-tune vision networks to overcome data sparsity.
Our findings highlight the difficulties of transferring common benchmark models
to real-world tasks. We discuss this and propose steps forward.
Related papers
- General Geospatial Inference with a Population Dynamics Foundation Model [17.696501367579014]
Population Dynamics Foundation Model (PDFM) aims to capture relationships between diverse data modalities.
We first construct a geo-indexed dataset for postal codes and counties across the United States.
We then model this data and the complex relationships between locations using a graph neural network.
We combined the PDFM with a state-of-the-art forecasting foundation model, TimesFM, to predict unemployment and poverty.
arXiv Detail & Related papers (2024-11-11T18:32:44Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
Overhead images can help fill in the gaps where community information is sparse.
Recent advancements in machine learning and computer vision have made it possible to quickly extract features from and detect patterns in image data.
In this work, we explore how well two approaches, a supervised convolutional neural network and semi-supervised clustering can estimate population density, median household income, and educational attainment.
arXiv Detail & Related papers (2023-09-28T19:30:26Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
We present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis.
In this work, we combine three real-world open data sources to obtain 13 channels.
Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar.
arXiv Detail & Related papers (2022-01-26T14:58:51Z) - Census-Independent Population Estimation using Representation Learning [0.5735035463793007]
Census-independent population estimation approaches using alternative data sources have shown promise in providing frequent and reliable population estimates locally.
We explore recent representation learning approaches, and assess the transferability of representations to population estimation in Mozambique.
Using representation learning reduces required human supervision, since features are extracted automatically.
We compare the resulting population estimates to existing population products from GRID3, Facebook (HRSL) and WorldPop.
arXiv Detail & Related papers (2021-10-06T15:13:36Z) - One-shot Transfer Learning for Population Mapping [10.530184452907902]
We propose a novel one-shot transfer learning framework PSRNet to transfer spatial-temporal knowledge across cities.
Experiments on real-life datasets of 4 cities demonstrate that PSRNet has significant advantages over 8 state-of-the-art baselines.
arXiv Detail & Related papers (2021-08-13T13:19:09Z) - Seeing poverty from space, how much can it be tuned? [0.0]
We demonstrate that individuals with no organizational affiliation can participate in the improvement of predicting local poverty levels in a given agro-ecological environment.
The approach builds upon several pioneering efforts related to mapping poverty by deep learning to process satellite imagery and "ground-truth" data from the field.
A key goal of the project was to intentionally keep costs as low as possible - by using freely available resources - so that citizen scientists, students and organizations could replicate the method in other areas of interest.
arXiv Detail & Related papers (2021-07-30T15:23:54Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Deploying machine learning to assist digital humanitarians: making image
annotation in OpenStreetMap more efficient [72.44260113860061]
We propose an interactive method to support and optimize the work of volunteers in OpenStreetMap.
The proposed method greatly reduces the amount of data that the volunteers of OSM need to verify/correct.
arXiv Detail & Related papers (2020-09-17T10:05:30Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.