Certification of non-Gaussian Einstein-Podolsky-Rosen Steering
- URL: http://arxiv.org/abs/2308.13867v1
- Date: Sat, 26 Aug 2023 12:57:22 GMT
- Title: Certification of non-Gaussian Einstein-Podolsky-Rosen Steering
- Authors: Mingsheng Tian, Zihang Zou, Da Zhang, David Barral, Kamel Bencheikh,
Qiongyi He, Feng-Xiao Sun, and Yu Xiang
- Abstract summary: We present an efficient non-Gaussian steering criterion based on the high-order observables.
We propose a feasible scheme to create multi-component cat states with tunable size.
Our work reveals the fundamental characteristics of non-Gaussianity and quantum correlations.
- Score: 2.9290107337630613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Gaussian quantum states are a known necessary resource for reaching a
quantum advantage and for violating Bell inequalities in continuous variable
systems. As one kind of manifestation of quantum correlations,
Einstein-Podolsky-Rosen (EPR) steering enables verification of shared
entanglement even when one of the subsystems is not characterized. However, how
to detect and classify such an effect for non-Gaussian states is far from being
well understood. Here, we present an efficient non-Gaussian steering criterion
based on the high-order observables and conduct a systematic investigation into
the hierarchy of non-Gaussian steering criteria. Moreover, we apply our
criterion to three experimentally-relevant non-Gaussian states under realistic
conditions and, in particular, propose a feasible scheme to create
multi-component cat states with tunable size by performing a suitable
high-order quadrature measurement on the steering party. Our work reveals the
fundamental characteristics of non-Gaussianity and quantum correlations, and
offers new insights to explore their applications in quantum information
processing.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Homodyne detection of non-Gaussian quantum steering [0.0]
We propose a protocol based on Fisher information for witnessing steering in general continuous-variable bipartite states.
It proves to be relevant for the detection of non-Gaussian steering in scenarios where witnesses based on Gaussian features like the covariance matrix are shown to fail.
arXiv Detail & Related papers (2022-01-27T10:53:25Z) - Noiseless linear amplification in quantum target detection using
Gaussian states [0.0]
Quantum target detection aims to utilise quantum technologies to achieve performances in target detection not possible through purely classical means.
This paper considers the employment of a noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target detection protocol.
arXiv Detail & Related papers (2022-01-07T14:50:42Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum Non-Gaussianity From An Indefinite Causal Order of Gaussian
Operations [0.0]
Quantum Non-Gaussian states are considered as a useful resource for many tasks in quantum information processing.
We are addressing to be very useful to engineer highly non-Gaussian states from operations whose order is controlled by degrees of freedom of a control qubit.
arXiv Detail & Related papers (2021-08-30T09:20:17Z) - Non-Gaussian Quantum States and Where to Find Them [0.0]
We show how non-Gaussian states can be created by performing measurements on a subset of modes in a Gaussian state.
We demonstrate that Wigner negativity is a requirement to violate Bell inequalities and to achieve a quantum computational advantage.
arXiv Detail & Related papers (2021-04-26T13:59:41Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox [0.0]
The Einstein-Podolsky-Rosen paradox plays a fundamental role in our understanding of quantum mechanics.
It is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle.
This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering.
arXiv Detail & Related papers (2020-09-17T17:46:44Z) - Robust phase estimation of Gaussian states in the presence of outlier
quantum states [21.22196305592545]
We first present a statistical framework of robust statistics in a quantum system to handle outlier quantum states.
We then apply the method of M-estimators to suppress untrusted measurement outcomes due to outlier quantum states.
arXiv Detail & Related papers (2020-08-05T04:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.