論文の概要: Ensemble of Binary Classifiers Combined Using Recurrent Correlation
Associative Memories
- arxiv url: http://arxiv.org/abs/2009.08578v1
- Date: Fri, 18 Sep 2020 01:16:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 02:23:25.516382
- Title: Ensemble of Binary Classifiers Combined Using Recurrent Correlation
Associative Memories
- Title(参考訳): リカレント相関関連記憶を用いたバイナリ分類器の組合わせ
- Authors: Rodolfo Anibal Lobo and Marcos Eduardo Valle
- Abstract要約: 多数決は、アンサンブル法で分類器を結合する手法の例である。
本稿では,二項分類問題に対する繰り返し相関連想記憶に基づくアンサンブル手法を提案する。
- 参考スコア(独自算出の注目度): 1.3706331473063877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An ensemble method should cleverly combine a group of base classifiers to
yield an improved classifier. The majority vote is an example of a methodology
used to combine classifiers in an ensemble method. In this paper, we propose to
combine classifiers using an associative memory model. Precisely, we introduce
ensemble methods based on recurrent correlation associative memories (RCAMs)
for binary classification problems. We show that an RCAM-based ensemble
classifier can be viewed as a majority vote classifier whose weights depend on
the similarity between the base classifiers and the resulting ensemble method.
More precisely, the RCAM-based ensemble combines the classifiers using a
recurrent consult and vote scheme. Furthermore, computational experiments
confirm the potential application of the RCAM-based ensemble method for binary
classification problems.
- Abstract(参考訳): アンサンブル法は、基本分類器のグループを巧みに組み合わせて改良された分類器を生成する。
多数決は、アンサンブル法で分類器を結合する手法の例である。
本稿では,連想記憶モデルを用いて分類器を組み合わせることを提案する。
本稿では,2値分類問題に対する繰り返し相関連想記憶(RCAM)に基づくアンサンブル手法を提案する。
本稿では,RCAMに基づくアンサンブル分類器を,基本分類器と結果のアンサンブル法との類似性に依存する多数決分類器とみなすことができることを示す。
より正確には、RCAMベースのアンサンブルは再帰的なコンサルティングと投票方式を用いて分類器を組み合わせる。
さらに、計算実験により、RCAMに基づくアンサンブル法のバイナリ分類問題への応用の可能性を確認する。
関連論文リスト
- Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Probability-driven scoring functions in combining linear classifiers [0.913755431537592]
本研究の目的は,線形分類器のアンサンブルに特化した新しい融合法を構築することである。
提案手法は,KEELレポジトリから抽出した複数のベンチマークデータセットを用いて参照手法と比較する。
実験により、ある条件下では、いくつかの改善が得られ得ることが示された。
論文 参考訳(メタデータ) (2021-09-16T08:58:32Z) - Relearning ensemble selection based on new generated features [0.0]
提案手法は,3つのベンチマークデータセットと1つの合成データセットを用いて,最先端のアンサンブル手法と比較した。
提案手法の評価には4つの分類性能指標を用いる。
論文 参考訳(メタデータ) (2021-06-12T12:45:32Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - CAC: A Clustering Based Framework for Classification [20.372627144885158]
分類アウェアクラスタリング(CAC)と呼ばれるシンプルで効率的で汎用的なフレームワークを設計する。
本実験は,クラスタリングと分類を併用した従来の手法よりもCACの有効性を示すものである。
論文 参考訳(メタデータ) (2021-02-23T18:59:39Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - A new interval-based aggregation approach based on bagging and Interval
Agreement Approach (IAA) in ensemble learning [0.0]
本稿では, アンサンブル学習において, ガベージ・リサンプリング・アプローチとIAA(Interval Agreement Approach)を用いた, 間隔に基づく新たなアグリゲーション・モデルを提案する。
本稿では,アンサンブル学習における新しいアグリゲーションアプローチの実装に加えて,アンサンブル学習におけるインターバルモデリングの利用を促す実験をいくつか考案した。
論文 参考訳(メタデータ) (2020-12-15T09:33:12Z) - Open-Set Recognition with Gaussian Mixture Variational Autoencoders [91.3247063132127]
推論において、オープンセット分類は、サンプルをトレーニングから既知のクラスに分類するか、未知のクラスとして拒絶するかのどちらかである。
我々は,協調的に再構築を学習し,潜在空間におけるクラスベースのクラスタリングを行うよう,我々のモデルを訓練する。
我々のモデルは、より正確で堅牢なオープンセット分類結果を実現し、平均的なF1改善率は29.5%である。
論文 参考訳(メタデータ) (2020-06-03T01:15:19Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。