論文の概要: Clustering Binary Data by Application of Combinatorial Optimization
Heuristics
- arxiv url: http://arxiv.org/abs/2001.01809v1
- Date: Mon, 6 Jan 2020 23:33:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 02:10:50.744775
- Title: Clustering Binary Data by Application of Combinatorial Optimization
Heuristics
- Title(参考訳): 組合せ最適化ヒューリスティックスを用いたバイナリデータのクラスタリング
- Authors: Javier Trejos-Zelaya, Luis Eduardo Amaya-Brice\~no, Alejandra
Jim\'enez-Romero, Alex Murillo-Fern\'andez, Eduardo Piza-Volio, Mario
Villalobos-Arias
- Abstract要約: 本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
- 参考スコア(独自算出の注目度): 52.77024349608834
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study clustering methods for binary data, first defining aggregation
criteria that measure the compactness of clusters. Five new and original
methods are introduced, using neighborhoods and population behavior
combinatorial optimization metaheuristics: first ones are simulated annealing,
threshold accepting and tabu search, and the others are a genetic algorithm and
ant colony optimization. The methods are implemented, performing the proper
calibration of parameters in the case of heuristics, to ensure good results.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a
comparison is performed for one of the aggregations using L1 dissimilarity,
with hierarchical clustering, and a version of k-means: partitioning around
medoids or PAM. Simulated annealing perform very well, especially compared to
classical methods.
- Abstract(参考訳): 本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
周辺地域と人口行動を組み合わせたメタヒューリスティックスを用いた新しい5つの手法が導入された: まず1つは、アニーリング、しきい値の受け入れ、タブサーチ、もう1つは遺伝的アルゴリズムとアリコロニー最適化である。
提案手法は, ヒューリスティックスにおけるパラメータの適切なキャリブレーションを行い, 良好な結果が得られた。
準モンテカルロ実験によって生成された16のデータテーブルから、l1の異質性(階層的クラスタリング)とk-meansのバージョン(メドロイドやpamを囲むパーティショニング)を用いた1つのアグリゲーションの比較を行う。
シミュレーションアニーリングは、特に古典的手法と比較して非常によく機能する。
関連論文リスト
- Linear time Evidence Accumulation Clustering with KMeans [0.0]
この研究は、平均的なリンククラスタリングの振る舞いを模倣するトリックを記述する。
分割の密度を効率よく計算する方法を見つけ、二次的な複雑さから線形的な複雑さへのコストを削減した。
k平均結果は、計算コストを低く保ちながら、NMIの観点からは、最先端の技術に匹敵する。
論文 参考訳(メタデータ) (2023-11-15T14:12:59Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
本稿では,BIC基準の観点から,最適なデータセットをグループ化することで,データセットをクラスタリングするアルゴリズムを提案する。
このアルゴリズムの重要な利点は、既に訓練済みのクラスタに基づいて、新しいデータの正しいスーパークラスタを予測する能力である。
論文 参考訳(メタデータ) (2023-09-05T23:49:46Z) - Shift of Pairwise Similarities for Data Clustering [7.462336024223667]
正規化項がクラスタの2乗サイズの和である場合を考察し、ペアの類似性の適応正規化に一般化する。
これは、ペアの類似性を(適切に)シフトさせ、それらのうちのいくつかを負にする可能性がある。
そこで我々は,新しいクラスタリング問題を解くために,高速な理論的収束率を持つ効率的な局所探索最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-25T16:55:07Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Contrastive Clustering [57.71729650297379]
本稿では,インスタンスレベルのコントラスト学習を明示的に行うContrastive Clustering (CC)を提案する。
特にCCは、CIFAR-10(CIFAR-100)データセット上で0.705(0.431)のNMIを達成しており、最高のベースラインと比較して最大19%(39%)のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-09-21T08:54:40Z) - Biclustering with Alternating K-Means [5.089110111757978]
本稿では,経験的クラスタリングリスクを最小限に抑えるというアイデアに基づいて,ビクラスタリング問題の新たな定式化について述べる。
カラムと行間のk-meansクラスタリングアルゴリズムの適応バージョンを交互に使用することにより,局所最小値を求める,単純で斬新なアルゴリズムを提案する。
その結果,本アルゴリズムは,データ中の有意義な構造を検知し,様々な設定や状況において競合する2クラスタリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-09-09T20:15:24Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
本稿では,データ行列の疎度と目的関数の好適な構造に適応する,ランダムに外挿した原始-双対座標降下法を提案する。
一般凸凹の場合, 主対差と目的値に対するシーケンスのほぼ確実に収束と最適サブ線形収束率を示す。
論文 参考訳(メタデータ) (2020-07-13T17:39:35Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。