Counterfactual Explanation and Causal Inference in Service of Robustness
in Robot Control
- URL: http://arxiv.org/abs/2009.08856v2
- Date: Tue, 22 Sep 2020 09:50:00 GMT
- Title: Counterfactual Explanation and Causal Inference in Service of Robustness
in Robot Control
- Authors: Sim\'on C. Smith and Subramanian Ramamoorthy
- Abstract summary: We propose an architecture for training generative models of counterfactual conditionals of the form, 'can we modify event A to cause B instead of C?'
In contrast to conventional control design approaches, where robustness is quantified in terms of the ability to reject noise, we explore the space of counterfactuals that might cause a certain requirement to be violated.
- Score: 15.104159722499366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an architecture for training generative models of counterfactual
conditionals of the form, 'can we modify event A to cause B instead of C?',
motivated by applications in robot control. Using an 'adversarial training'
paradigm, an image-based deep neural network model is trained to produce small
and realistic modifications to an original image in order to cause user-defined
effects. These modifications can be used in the design process of image-based
robust control - to determine the ability of the controller to return to a
working regime by modifications in the input space, rather than by adaptation.
In contrast to conventional control design approaches, where robustness is
quantified in terms of the ability to reject noise, we explore the space of
counterfactuals that might cause a certain requirement to be violated, thus
proposing an alternative model that might be more expressive in certain
robotics applications. So, we propose the generation of counterfactuals as an
approach to explanation of black-box models and the envisioning of potential
movement paths in autonomous robotic control. Firstly, we demonstrate this
approach in a set of classification tasks, using the well known MNIST and
CelebFaces Attributes datasets. Then, addressing multi-dimensional regression,
we demonstrate our approach in a reaching task with a physical robot, and in a
navigation task with a robot in a digital twin simulation.
Related papers
- Differentiable Robot Rendering [45.23538293501457]
We introduce differentiable robot rendering, a method allowing the visual appearance of a robot body to be directly differentiable with respect to its control parameters.
We demonstrate its capability and usage in applications including reconstruction of robot poses from images and controlling robots through vision language models.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGen is a novel framework that integrates differentiable physics simulation, differentiable rendering, and a vision-language model.
It can generate realistic robot demonstrations by minimizing the distance between the embedding of the language instruction and the embedding of the simulated observation.
Experiments demonstrate that with DiffGen, we could efficiently and effectively generate robot data with minimal human effort or training time.
arXiv Detail & Related papers (2024-05-12T15:38:17Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
In this work, we focus on unsupervised vision-language--action mapping in the area of robotic manipulation.
We propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%.
Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories.
arXiv Detail & Related papers (2024-04-02T13:25:16Z) - High-Degrees-of-Freedom Dynamic Neural Fields for Robot Self-Modeling and Motion Planning [6.229216953398305]
A robot self-model is a representation of the robot's physical morphology that can be used for motion planning tasks.
We propose a new encoder-based neural density field architecture for dynamic object-centric scenes conditioned on high numbers of degrees of freedom.
In a 7-DOF robot test setup, the learned self-model achieves a Chamfer-L2 distance of 2% of the robot's dimension workspace.
arXiv Detail & Related papers (2023-10-05T16:01:29Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
This work introduces a paradigm for pre-training a general purpose representation that can serve as a starting point for multiple tasks on a given robot.
We present the Perception-Action Causal Transformer (PACT), a generative transformer-based architecture that aims to build representations directly from robot data in a self-supervised fashion.
We show that finetuning small task-specific networks on top of the larger pretrained model results in significantly better performance compared to training a single model from scratch for all tasks simultaneously.
arXiv Detail & Related papers (2022-09-22T16:20:17Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Robust Robotic Control from Pixels using Contrastive Recurrent
State-Space Models [8.22669535053079]
We study how to learn world models in unconstrained environments over high-dimensional observation spaces such as images.
One source of difficulty is the presence of irrelevant but hard-to-model background distractions.
We learn a recurrent latent dynamics model which contrastively predicts the next observation.
This simple model leads to surprisingly robust robotic control even with simultaneous camera, background, and color distractions.
arXiv Detail & Related papers (2021-12-02T12:15:25Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.