論文の概要: Review of Machine-Learning Methods for RNA Secondary Structure
Prediction
- arxiv url: http://arxiv.org/abs/2009.08868v1
- Date: Tue, 1 Sep 2020 03:17:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 00:51:29.755546
- Title: Review of Machine-Learning Methods for RNA Secondary Structure
Prediction
- Title(参考訳): RNA二次構造予測のための機械学習手法の検討
- Authors: Qi Zhao, Zheng Zhao, Xiaoya Fan, Zhengwei Yuan, Qian Mao, Yudong Yao
- Abstract要約: 機械学習技術に基づくRNA二次構造予測手法の概要について概説する。
RNA二次構造予測の分野で現在進行中の課題と今後の動向についても論じる。
- 参考スコア(独自算出の注目度): 21.3539253580504
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Secondary structure plays an important role in determining the function of
non-coding RNAs. Hence, identifying RNA secondary structures is of great value
to research. Computational prediction is a mainstream approach for predicting
RNA secondary structure. Unfortunately, even though new methods have been
proposed over the past 40 years, the performance of computational prediction
methods has stagnated in the last decade. Recently, with the increasing
availability of RNA structure data, new methods based on machine-learning
technologies, especially deep learning, have alleviated the issue. In this
review, we provide a comprehensive overview of RNA secondary structure
prediction methods based on machine-learning technologies and a tabularized
summary of the most important methods in this field. The current pending issues
in the field of RNA secondary structure prediction and future trends are also
discussed.
- Abstract(参考訳): 二次構造は非コードrnaの機能を決定する上で重要な役割を果たす。
したがって、RNA二次構造を同定することは研究にとって非常に重要である。
計算予測はRNA二次構造を予測する主要なアプローチである。
残念ながら、過去40年間に新しい手法が提案されてきたが、計算予測手法の性能は過去10年間に停滞している。
近年、RNA構造データの利用が増加し、機械学習技術、特にディープラーニングに基づく新しい手法が問題を軽減するようになった。
本稿では,機械学習技術に基づくrna二次構造予測手法の包括的概要と,この分野で最も重要な手法の表化概要について述べる。
RNA二次構造予測の分野で現在進行中の課題と今後の動向についても論じる。
関連論文リスト
- Predicting Distance matrix with large language models [1.8855270809505869]
データ制限のため、RNA構造予測は依然として重要な課題である。
核磁気共鳴分光法、X線結晶学、電子顕微鏡などの従来の手法は高価で時間を要する。
距離マップはヌクレオチド間の空間的制約を単純化し、完全な3Dモデルを必要としない本質的な関係を捉える。
論文 参考訳(メタデータ) (2024-09-24T10:28:55Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - RNA Secondary Structure Prediction Using Transformer-Based Deep Learning Models [13.781096813376145]
ヒトゲノムプロジェクト(Human Genome Project)は、生体分子の配列、構造、機能に関連するデータの指数関数的な増加につながった。
本稿では、RNAの基本概念、RNA二次構造、その予測について論じる。
生体高分子の構造予測における機械学習技術の応用について検討した。
論文 参考訳(メタデータ) (2024-04-14T08:36:14Z) - Rethinking Performance Measures of RNA Secondary Structure Problems [42.25267871026153]
深層学習法は、擬似ノットや多相互作用ベースペアのような複雑な特徴を予測することによって、従来のアルゴリズムを超越した。
代替計量としてWeisfeiler-Lehmanグラフカーネル(WL)を提案する。
論文 参考訳(メタデータ) (2023-12-04T08:46:24Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
RFoldは、与えられたシーケンスから最もよく一致するK-Rook解を予測する方法である。
RFoldは、最先端のアプローチよりも競争性能とおよそ8倍の推論効率を達成する。
論文 参考訳(メタデータ) (2022-12-02T16:34:56Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
E2Efold-3Dというエンド・ツー・エンドの深層学習手法を開発し,テクスタイド・ノボRNA構造予測を精度良く行う。
完全微分可能なエンドツーエンドパイプライン、二次構造による自己蒸留、パラメータ効率のよいバックボーンの定式化など、データ不足を克服するために、いくつかの新しいコンポーネントが提案されている。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - Computational prediction of RNA tertiary structures using machine
learning methods [14.35527588241679]
計算予測アプローチはRNA構造とその安定化因子を理解するのに役立つ。
タンパク質関連分野におけるそれらの利用の歴史は長いが、RNA第3次構造を予測する機械学習手法は新しくて稀である。
論文 参考訳(メタデータ) (2020-09-03T04:01:43Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
本稿では,RNA二次構造予測のためのエンド・ツー・エンドのディープラーニングモデルであるE2Efoldを提案する。
E2Efoldの鍵となる考え方は、RNA塩基対行列を直接予測し、制約のないプログラミングを、制約を強制するための深いアーキテクチャのテンプレートとして使うことである。
ベンチマークデータセットに関する包括的な実験により、E2Efoldの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-02-13T23:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。