論文の概要: E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction
- arxiv url: http://arxiv.org/abs/2207.01586v1
- Date: Mon, 4 Jul 2022 17:15:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 17:03:58.151413
- Title: E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction
- Title(参考訳): e2efold-3d : 高精度 de novo rna 3d構造予測のためのエンドツーエンドディープラーニング法
- Authors: Tao Shen, Zhihang Hu, Zhangzhi Peng, Jiayang Chen, Peng Xiong, Liang
Hong, Liangzhen Zheng, Yixuan Wang, Irwin King, Sheng Wang, Siqi Sun, and Yu
Li
- Abstract要約: E2Efold-3Dというエンド・ツー・エンドの深層学習手法を開発し,テクスタイド・ノボRNA構造予測を精度良く行う。
完全微分可能なエンドツーエンドパイプライン、二次構造による自己蒸留、パラメータ効率のよいバックボーンの定式化など、データ不足を克服するために、いくつかの新しいコンポーネントが提案されている。
- 参考スコア(独自算出の注目度): 46.38735421190187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RNA structure determination and prediction can promote RNA-targeted drug
development and engineerable synthetic elements design. But due to the
intrinsic structural flexibility of RNAs, all the three mainstream structure
determination methods (X-ray crystallography, NMR, and Cryo-EM) encounter
challenges when resolving the RNA structures, which leads to the scarcity of
the resolved RNA structures. Computational prediction approaches emerge as
complementary to the experimental techniques. However, none of the \textit{de
novo} approaches is based on deep learning since too few structures are
available. Instead, most of them apply the time-consuming sampling-based
strategies, and their performance seems to hit the plateau. In this work, we
develop the first end-to-end deep learning approach, E2Efold-3D, to accurately
perform the \textit{de novo} RNA structure prediction. Several novel components
are proposed to overcome the data scarcity, such as a fully-differentiable
end-to-end pipeline, secondary structure-assisted self-distillation, and
parameter-efficient backbone formulation. Such designs are validated on the
independent, non-overlapping RNA puzzle testing dataset and reach an average
sub-4 \AA{} root-mean-square deviation, demonstrating its superior performance
compared to state-of-the-art approaches. Interestingly, it also achieves
promising results when predicting RNA complex structures, a feat that none of
the previous systems could accomplish. When E2Efold-3D is coupled with the
experimental techniques, the RNA structure prediction field can be greatly
advanced.
- Abstract(参考訳): RNAの構造決定と予測は、RNAを標的とした医薬品開発とエンジニアリング可能な合成元素設計を促進する。
しかし、RNAの固有の構造的柔軟性のため、3つの主要な構造決定法(X線結晶学、NMR、Cryo-EM)は、RNA構造を分解する際に問題に遭遇し、解決されたRNA構造が不足する。
計算予測手法は実験手法の補完として現れる。
しかし、 \textit{de novo} のアプローチは、構造があまりにも少ないため、ディープラーニングに基づいていない。
その代わりに、多くは時間を要するサンプリングベースの戦略を適用し、そのパフォーマンスは高水準に達するように思える。
本研究では,e2efold-3dという最初のエンドツーエンドのディープラーニング手法を開発し,rna構造予測を精度良く行う。
完全微分可能なエンドツーエンドパイプライン、二次構造による自己蒸留、パラメータ効率のよいバックボーンの定式化など、データ不足を克服するために、いくつかの新しいコンポーネントが提案されている。
このような設計は、独立して重複しないRNAパズルテストデータセットで検証され、平均的なサブ-4 \AA{}ルート平均二乗偏差に達する。
興味深いことに、RNAの複雑な構造を予測する際にも有望な結果が得られる。
E2Efold-3Dと実験技術が組み合わさると、RNA構造予測場が大きく進歩する。
関連論文リスト
- Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLMはRNA配列の大規模なデータセットを使用して、自己教師付き方法で、意味的に豊かな数値ベクトルで各RNA塩基をどう表現するかを学ぶ。
その中で、二次構造を予測することは、RNAの機能的機構を明らかにするための基本的な課題である。
本稿では,いくつかの事前学習されたRNA-LLMの総合的な実験解析を行い,それらを統合されたディープラーニングフレームワークにおけるRNA二次構造予測タスクと比較する。
論文 参考訳(メタデータ) (2024-10-21T17:12:06Z) - Beyond Sequence: Impact of Geometric Context for RNA Property Prediction [6.559586725997741]
RNA構造は1D配列、2Dトポロジカルグラフ、3Dオール原子モデルとして表現できる。
既存の作品は、主に2次元と3次元の幾何学的文脈を見渡す1次元シーケンスベースのモデルに焦点を当てている。
本研究では,RNA特性予測に明示的な2次元および3次元幾何情報を取り入れた最初の体系的評価を行った。
論文 参考訳(メタデータ) (2024-10-15T17:09:34Z) - Predicting Distance matrix with large language models [1.8855270809505869]
データ制限のため、RNA構造予測は依然として重要な課題である。
核磁気共鳴分光法、X線結晶学、電子顕微鏡などの従来の手法は高価で時間を要する。
距離マップはヌクレオチド間の空間的制約を単純化し、完全な3Dモデルを必要としない本質的な関係を捉える。
論文 参考訳(メタデータ) (2024-09-24T10:28:55Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
RFoldは、与えられたシーケンスから最もよく一致するK-Rook解を予測する方法である。
RFoldは、最先端のアプローチよりも競争性能とおよそ8倍の推論効率を達成する。
論文 参考訳(メタデータ) (2022-12-02T16:34:56Z) - Review of Machine-Learning Methods for RNA Secondary Structure
Prediction [21.3539253580504]
機械学習技術に基づくRNA二次構造予測手法の概要について概説する。
RNA二次構造予測の分野で現在進行中の課題と今後の動向についても論じる。
論文 参考訳(メタデータ) (2020-09-01T03:17:15Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
本稿では,RNA二次構造予測のためのエンド・ツー・エンドのディープラーニングモデルであるE2Efoldを提案する。
E2Efoldの鍵となる考え方は、RNA塩基対行列を直接予測し、制約のないプログラミングを、制約を強制するための深いアーキテクチャのテンプレートとして使うことである。
ベンチマークデータセットに関する包括的な実験により、E2Efoldの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-02-13T23:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。