Evaluation of Adversarial Training on Different Types of Neural Networks
in Deep Learning-based IDSs
- URL: http://arxiv.org/abs/2007.04472v1
- Date: Wed, 8 Jul 2020 23:33:30 GMT
- Title: Evaluation of Adversarial Training on Different Types of Neural Networks
in Deep Learning-based IDSs
- Authors: Rana Abou Khamis and Ashraf Matrawy
- Abstract summary: We focus on investigating the effectiveness of different evasion attacks and how to train a resilience deep learning-based IDS.
We use the min-max approach to formulate the problem of training robust IDS against adversarial examples.
Our experiments on different deep learning algorithms and different benchmark datasets demonstrate that defense using an adversarial training-based min-max approach improves the robustness against the five well-known adversarial attack methods.
- Score: 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network security applications, including intrusion detection systems of deep
neural networks, are increasing rapidly to make detection task of anomaly
activities more accurate and robust. With the rapid increase of using DNN and
the volume of data traveling through systems, different growing types of
adversarial attacks to defeat them create a severe challenge. In this paper, we
focus on investigating the effectiveness of different evasion attacks and how
to train a resilience deep learning-based IDS using different Neural networks,
e.g., convolutional neural networks (CNN) and recurrent neural networks (RNN).
We use the min-max approach to formulate the problem of training robust IDS
against adversarial examples using two benchmark datasets. Our experiments on
different deep learning algorithms and different benchmark datasets demonstrate
that defense using an adversarial training-based min-max approach improves the
robustness against the five well-known adversarial attack methods.
Related papers
- Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - C-RADAR: A Centralized Deep Learning System for Intrusion Detection in Software Defined Networks [0.0]
We propose the use of deep learning (DL) techniques for intrusion detection in Software Defined Networks (SDNs)
Our results show that the DL-based approach outperforms traditional methods in terms of detection accuracy and computational efficiency.
This technique can be trained to detect new attack patterns and improve the overall security of SDNs.
arXiv Detail & Related papers (2024-08-30T15:39:37Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - Deep Q-Learning based Reinforcement Learning Approach for Network
Intrusion Detection [1.7205106391379026]
We introduce a new generation of network intrusion detection methods that combines a Q-learning-based reinforcement learning with a deep-feed forward neural network method for network intrusion detection.
Our proposed Deep Q-Learning (DQL) model provides an ongoing auto-learning capability for a network environment.
Our experimental results show that our proposed DQL is highly effective in detecting different intrusion classes and outperforms other similar machine learning approaches.
arXiv Detail & Related papers (2021-11-27T20:18:00Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
Deep neural networks are vulnerable to intentionally crafted adversarial examples.
Various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models.
arXiv Detail & Related papers (2021-08-29T08:11:36Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
We provide an experimental-based review of neural-based methods applied to intrusion detection issues.
We offer a complete view of the most prominent neural-based techniques relevant to intrusion detection, including deep-based approaches or weightless neural networks.
Our evaluation quantifies the value of neural networks, particularly when state-of-the-art datasets are used to train the models.
arXiv Detail & Related papers (2020-09-18T18:32:24Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.