論文の概要: Holistic Grid Fusion Based Stop Line Estimation
- arxiv url: http://arxiv.org/abs/2009.09093v1
- Date: Fri, 18 Sep 2020 21:29:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 02:15:43.949520
- Title: Holistic Grid Fusion Based Stop Line Estimation
- Title(参考訳): ホロスティックグリッド融合に基づく停止線推定
- Authors: Runsheng Xu, Faezeh Tafazzoli, Li Zhang, Timo Rehfeld, Gunther Krehl,
Arunava Seal
- Abstract要約: 交差点で前もって停止する場所を知ることは、車両の長手速度を制御する上で必須のパラメータである。
文献における既存の手法のほとんどは、カメラのみを使用して停止線を検出するが、通常は検出範囲の点で不十分である。
本稿では,ステレオカメラやライダーなどの融合多感データを入力として活用し,ニューラルネットワークアーキテクチャを慎重に設計し,停止線を検出する手法を提案する。
- 参考スコア(独自算出の注目度): 5.5476621209686225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intersection scenarios provide the most complex traffic situations in
Autonomous Driving and Driving Assistance Systems. Knowing where to stop in
advance in an intersection is an essential parameter in controlling the
longitudinal velocity of the vehicle. Most of the existing methods in
literature solely use cameras to detect stop lines, which is typically not
sufficient in terms of detection range. To address this issue, we propose a
method that takes advantage of fused multi-sensory data including stereo camera
and lidar as input and utilizes a carefully designed convolutional neural
network architecture to detect stop lines. Our experiments show that the
proposed approach can improve detection range compared to camera data alone,
works under heavy occlusion without observing the ground markings explicitly,
is able to predict stop lines for all lanes and allows detection at a distance
up to 50 meters.
- Abstract(参考訳): インターセクションシナリオは、自律運転支援システムにおける最も複雑な交通状況を提供する。
交差点で事前に停止する場所を知ることは、車両の長手速度を制御する上で必須のパラメータである。
文献における既存の手法のほとんどは、カメラのみを使用して停止線を検出するが、通常は検出範囲の点で不十分である。
そこで本稿では,ステレオカメラやライダーなどの融合多感データを入力として活用し,ニューラルネットワークアーキテクチャを慎重に設計し,停止線を検出する手法を提案する。
提案手法は, カメラデータのみと比較して検出範囲を改善でき, 接地標識を明示的に観察することなく重閉塞下で動作し, 全車線の停止線を予測でき, 最大50mの距離で検出できることを示す。
関連論文リスト
- Homography Guided Temporal Fusion for Road Line and Marking Segmentation [73.47092021519245]
道路線やマーキングは、移動車両、影、グレアの存在下でしばしば閉鎖される。
本稿では,映像フレームを補足的に利用するHomography Guided Fusion (HomoFusion) モジュールを提案する。
カメラ固有のデータと地上平面の仮定をクロスフレーム対応に利用することにより,高速・高精度性能が向上した軽量ネットワークの実現が期待できることを示す。
論文 参考訳(メタデータ) (2024-04-11T10:26:40Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
ダッシュカムビデオを用いた自動運転車の脅威検出機構を提案する。
オブジェクトを識別するためのYOLO,高度な車線検出アルゴリズム,カメラからの距離を測定するマルチレグレッションモデルという,4つの主要なコンポーネントがある。
提案した脅威検出モデル(TDM)の最終的な精度は82.65%である。
論文 参考訳(メタデータ) (2022-09-06T12:01:07Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
高レベル特徴記述子に基づく2つの畳み込みニューラルネットワーク(CNN)は、重車両の盲点衝突を検出するために提案される。
盲点車両検出のための高次特徴抽出のための2つの事前学習ネットワークを統合するために,融合手法を提案する。
機能の融合により、より高速なR-CNNの性能が大幅に向上し、既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-17T11:10:37Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
既存の手法では、純粋な視覚的マッチングや時間的制約を考慮することが多いが、カメラネットワークの空間情報は無視する。
本稿では,時間的情報と空間的情報を統合したクロスカメラ生成に基づく歩行者検索フレームワークを提案する。
本手法の有効性を検証するため,最初のカメラ横断歩行者軌跡データセットを構築した。
論文 参考訳(メタデータ) (2022-04-27T13:10:48Z) - A Pedestrian Detection and Tracking Framework for Autonomous Cars:
Efficient Fusion of Camera and LiDAR Data [0.17205106391379021]
本稿では,カメラとLiDARセンサデータを用いた歩行者検出と追跡のための新しい手法を提案する。
検出フェーズは、LiDARストリームを計算的に抽出可能な深度画像に変換し、さらに、歩行者候補を特定するディープニューラルネットワークを開発する。
トラッキングフェーズは、Kalmanフィルタ予測と、シーン内の複数の歩行者を追跡するための光フローアルゴリズムの組み合わせである。
論文 参考訳(メタデータ) (2021-08-27T16:16:01Z) - Phase Space Reconstruction Network for Lane Intrusion Action Recognition [9.351931162958465]
本稿では,動作時系列分類のための新しいオブジェクトレベル位相空間再構成ネットワーク(PSRNet)を提案する。
私たちのpsrnetは最高精度98.0%に達し、既存のアクション認識アプローチを30%以上上回っています。
論文 参考訳(メタデータ) (2021-02-22T16:18:35Z) - LDNet: End-to-End Lane Marking Detection Approach Using a Dynamic Vision
Sensor [0.0]
本稿では,イベントカメラを用いたレーンマーキング検出の新たな応用について検討する。
符号化された特徴の空間分解能は、密度の高密度な空間ピラミッドプールブロックによって保持される。
提案手法の有効性をDVSデータセットを用いて評価した。
論文 参考訳(メタデータ) (2020-09-17T02:15:41Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
魚眼レンズを装着した校正単眼カメラを用いて3Dパラメータを推定するロバストな手法を提案する。
我々のアプローチでは、車両が90%以上の精度で、リアルタイムで距離を抑えることができる。
論文 参考訳(メタデータ) (2020-02-28T00:24:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。