論文の概要: Threat Detection In Self-Driving Vehicles Using Computer Vision
- arxiv url: http://arxiv.org/abs/2209.02438v1
- Date: Tue, 6 Sep 2022 12:01:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 14:20:49.117640
- Title: Threat Detection In Self-Driving Vehicles Using Computer Vision
- Title(参考訳): コンピュータビジョンを用いた自動運転車の脅威検出
- Authors: Umang Goenka, Aaryan Jagetia, Param Patil, Akshay Singh, Taresh
Sharma, Poonam Saini
- Abstract要約: ダッシュカムビデオを用いた自動運転車の脅威検出機構を提案する。
オブジェクトを識別するためのYOLO,高度な車線検出アルゴリズム,カメラからの距離を測定するマルチレグレッションモデルという,4つの主要なコンポーネントがある。
提案した脅威検出モデル(TDM)の最終的な精度は82.65%である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On-road obstacle detection is an important field of research that falls in
the scope of intelligent transportation infrastructure systems. The use of
vision-based approaches results in an accurate and cost-effective solution to
such systems. In this research paper, we propose a threat detection mechanism
for autonomous self-driving cars using dashcam videos to ensure the presence of
any unwanted obstacle on the road that falls within its visual range. This
information can assist the vehicle's program to en route safely. There are four
major components, namely, YOLO to identify the objects, advanced lane detection
algorithm, multi regression model to measure the distance of the object from
the camera, the two-second rule for measuring the safety, and limiting speed.
In addition, we have used the Car Crash Dataset(CCD) for calculating the
accuracy of the model. The YOLO algorithm gives an accuracy of around 93%. The
final accuracy of our proposed Threat Detection Model (TDM) is 82.65%.
- Abstract(参考訳): 道路上の障害物検出は、インテリジェントな交通インフラシステムの範囲内にある重要な研究分野である。
視覚に基づくアプローチは、そのようなシステムに対して正確で費用対効果の高い解決策をもたらす。
本研究では,ダッシュカムビデオを用いた自動運転車の脅威検出機構を提案する。
この情報は、安全に走行するための車両のプログラムを支援することができる。
オブジェクトを識別するためのYOLO、高度な車線検出アルゴリズム、カメラからの距離を測定するマルチレグレッションモデル、安全性を測定するための2秒ルール、速度を制限するための4つの主要なコンポーネントがある。
さらに,カークラッシュデータセット(CCD)を用いてモデルの精度を計算した。
YOLOアルゴリズムの精度は約93%である。
提案する脅威検出モデル(tdm)の最終精度は82.65%である。
関連論文リスト
- Vehicle Safety Management System [0.0]
本研究では,YOLO(You Only Look Once)オブジェクト検出アルゴリズムとステレオビジョン技術を組み合わせたリアルタイムオーバーテイク支援システムを提案する。
距離解析にはステレオビジョン,オブジェクト識別にはYOLO(You Only Look Once)が用いられている。
論文 参考訳(メタデータ) (2023-04-16T16:15:25Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - A Real-Time Wrong-Way Vehicle Detection Based on YOLO and Centroid
Tracking [0.0]
誤運転は、世界中の道路事故や交通渋滞の主な原因の1つである。
本稿では,道路監視カメラによる車両自動検知システムを提案する。
論文 参考訳(メタデータ) (2022-10-19T00:53:28Z) - A Quality Index Metric and Method for Online Self-Assessment of
Autonomous Vehicles Sensory Perception [164.93739293097605]
本稿では,検出品質指標(DQI)と呼ばれる新しい評価指標を提案し,カメラを用いた物体検出アルゴリズムの性能を評価する。
我々は,提案したDQI評価指標を予測するために,原画像画素とスーパーピクセルを入力として利用するスーパーピクセルベースのアテンションネットワーク(SPA-NET)を開発した。
論文 参考訳(メタデータ) (2022-03-04T22:16:50Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - Vehicle trajectory prediction in top-view image sequences based on deep
learning method [1.181206257787103]
周囲の車両の動きを推定し予測することは、自動車両と高度な安全システムにとって不可欠である。
道路の空中画像から得られた画像から学習した計算複雑性の低いモデルを提案する。
提案モデルでは, 対象車両とその周辺車両の移動履歴に関する画像を見るだけで, 自動車の将来の進路を予測できる。
論文 参考訳(メタデータ) (2021-02-02T20:48:19Z) - Computer Vision based Accident Detection for Autonomous Vehicles [0.0]
ダッシュボードカメラを用いて車両事故を検出する自動運転支援システムを提案する。
このフレームワークは、ダッシュカム映像のカスタムデータセットでテストされ、誤報率を低く保ちながら、高い事故検出率を達成する。
論文 参考訳(メタデータ) (2020-12-20T08:51:10Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
本稿では,LiDAR検出器を騙すために,汎用な3次元対向物体を生成する手法を提案する。
特に,LiDAR検出器から車両を完全に隠蔽するために,車両の屋根上に対向物体を配置し,その成功率は80%であることを示した。
これは、限られたトレーニングデータから見知らぬ条件下での、より安全な自動運転への一歩だ。
論文 参考訳(メタデータ) (2020-04-01T16:11:04Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
魚眼レンズを装着した校正単眼カメラを用いて3Dパラメータを推定するロバストな手法を提案する。
我々のアプローチでは、車両が90%以上の精度で、リアルタイムで距離を抑えることができる。
論文 参考訳(メタデータ) (2020-02-28T00:24:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。