論文の概要: Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning
in NLP Using Fewer Parameters & Less Data
- arxiv url: http://arxiv.org/abs/2009.09139v3
- Date: Thu, 21 Apr 2022 15:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 20:51:51.986291
- Title: Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning
in NLP Using Fewer Parameters & Less Data
- Title(参考訳): 条件適応型マルチタスク学習:少ないパラメータと少ないデータを用いたNLPにおける伝達学習の改善
- Authors: Jonathan Pilault, Amine Elhattami, Christopher Pal
- Abstract要約: マルチタスク学習(MTL)ネットワークは、異なるタスク間で学習知識を伝達するための有望な方法として登場した。
しかし、MTLは、低リソースタスクへの過度な適合、破滅的な忘れ込み、負のタスク転送といった課題に対処しなければならない。
本稿では,新しい条件付アテンション機構とタスク条件付きモジュール群からなるトランスフォーマーアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 5.689320790746046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Task Learning (MTL) networks have emerged as a promising method for
transferring learned knowledge across different tasks. However, MTL must deal
with challenges such as: overfitting to low resource tasks, catastrophic
forgetting, and negative task transfer, or learning interference. Often, in
Natural Language Processing (NLP), a separate model per task is needed to
obtain the best performance. However, many fine-tuning approaches are both
parameter inefficient, i.e., potentially involving one new model per task, and
highly susceptible to losing knowledge acquired during pretraining. We propose
a novel Transformer architecture consisting of a new conditional attention
mechanism as well as a set of task-conditioned modules that facilitate weight
sharing. Through this construction (a hypernetwork adapter), we achieve more
efficient parameter sharing and mitigate forgetting by keeping half of the
weights of a pretrained model fixed. We also use a new multi-task data sampling
strategy to mitigate the negative effects of data imbalance across tasks. Using
this approach, we are able to surpass single task fine-tuning methods while
being parameter and data efficient (using around 66% of the data for weight
updates). Compared to other BERT Large methods on GLUE, our 8-task model
surpasses other Adapter methods by 2.8% and our 24-task model outperforms by
0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger
variant of our single multi-task model approach performs competitively across
26 NLP tasks and yields state-of-the-art results on a number of test and
development sets. Our code is publicly available at
https://github.com/CAMTL/CA-MTL.
- Abstract(参考訳): マルチタスク学習(MTL)ネットワークは、異なるタスク間で学習知識を伝達するための有望な方法として登場した。
しかし、MTLは、低リソースタスクへの過度な適合、破滅的な忘れ込み、負のタスク転送、学習干渉といった課題に対処しなければならない。
自然言語処理(NLP)では、最高のパフォーマンスを得るためにタスクごとに個別のモデルが必要であることが多い。
しかし、多くの微調整アプローチはパラメータ非効率、すなわちタスク毎の1つの新しいモデルを含む可能性があり、事前訓練中に取得した知識を失う可能性が高い。
本稿では,新しい条件付注意機構と,重み共有を容易にするタスクコンディショニングモジュールからなる,新しいトランスフォーマーアーキテクチャを提案する。
この構成(ハイパーネットワークアダプタ)を通じて,事前学習したモデルの重みの半分を固定することで,より効率的なパラメータ共有を実現し,忘れることの軽減を図る。
また、タスク間のデータ不均衡の負の効果を軽減するために、新しいマルチタスクデータサンプリング戦略を使用する。
このアプローチを用いることで、パラメータとデータ効率(重み付け更新に約66%のデータを使用)を保ちながら、単一タスクの微調整方法を超えることができる。
glue上の他のbert largeメソッドと比較して、8-taskモデルは、他のアダプタメソッドを2.8%上回り、24-taskモデルはmtlとsingle taskの微調整を使用する0.7-1.0%を上回っています。
単一のマルチタスクモデルアプローチでは,26のNLPタスクに対して競合的に動作し,多数のテストおよび開発セットに対して最先端の結果が得られることを示す。
私たちのコードはhttps://github.com/CAMTL/CA-MTLで公開されています。
関連論文リスト
- On Giant's Shoulders: Effortless Weak to Strong by Dynamic Logits Fusion [23.63688816017186]
既存の弱強法では、静的な知識伝達比と、複雑な知識を伝達するための単一の小さなモデルを用いることが多い。
本稿では,複数のタスク固有小モデルに対して,それぞれ異なるタスクに特化して動作する動的ロジット融合手法を提案する。
本手法では,シングルタスクシナリオでは96.4%,マルチタスクシナリオでは86.3%のパフォーマンスギャップを埋める。
論文 参考訳(メタデータ) (2024-06-17T03:07:41Z) - Exploring intra-task relations to improve meta-learning algorithms [1.223779595809275]
我々は,タスクの効果的なミニバッチによるトレーニング安定性向上のために,タスク関係の外部知識を活用することを目的としている。
ミニバッチでタスクの多様なセットを選択すると、完全な勾配がより良く見積もられるため、トレーニングにおけるノイズの低減につながる、という仮説を立てる。
論文 参考訳(メタデータ) (2023-12-27T15:33:52Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA)は、アダプタチューニングとハイパーネットワーク上に構築された新しいフレームワークである。
サンプル効率のよい条件付きモジュールを生成するために、インスタンスdenseレトリバーとプロトタイプのハイパーネットワークを導入する。
PHAは、トレーニング可能なパラメータ、ストリームタスクの精度、サンプル効率のトレードオフをより良くすることを示す。
論文 参考訳(メタデータ) (2023-10-18T02:42:17Z) - Parameter Efficient Multi-task Model Fusion with Partial Linearization [97.23530944186078]
パラメータ効率のよい微調整技術において,マルチタスク融合を改善する新しい手法を提案する。
提案手法は, アダプタモジュールのみを部分的に線形化し, 線形化アダプタにタスク演算を適用する。
我々の部分線形化手法は、複数のタスクをより効果的に1つのモデルに融合させることを可能にしている。
論文 参考訳(メタデータ) (2023-10-07T08:55:54Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Preventing Catastrophic Forgetting in Continual Learning of New Natural
Language Tasks [17.879087904904935]
マルチタスク学習(MTL)は、自然言語処理において、1つのモデルで複数の関連するタスクを学習するための標準技術として広く受け入れられている。
通常、システムは時間とともに進化するので、既存のMTLモデルに新しいタスクを追加するには、通常、すべてのタスクをスクラッチから再トレーニングする必要があります。
本稿では、n+1タスクを解くための新しいタスクに、既に訓練済みのnタスクに関するモデルの知識を蒸留することにより、MTLモデルの能力を漸進的に拡張し、新しいタスクを時間とともに解決する問題にアプローチする。
論文 参考訳(メタデータ) (2023-02-22T00:18:25Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
本稿では,PeterRecと呼ばれるパラメータ効率のよい移動学習アーキテクチャを提案する。
PeterRecは、トレーニング済みのパラメータを、一連の再学習ニューラルネットワークを注入することで、微調整中に修正されないようにする。
我々は5つの下流タスクにおいて学習したユーザ表現の有効性を示すために、広範囲な実験的アブレーションを行う。
論文 参考訳(メタデータ) (2020-01-13T14:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。