論文の概要: Preventing Catastrophic Forgetting in Continual Learning of New Natural
Language Tasks
- arxiv url: http://arxiv.org/abs/2302.11074v1
- Date: Wed, 22 Feb 2023 00:18:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 16:45:56.702322
- Title: Preventing Catastrophic Forgetting in Continual Learning of New Natural
Language Tasks
- Title(参考訳): 新しい自然言語課題の継続的な学習におけるカタストロフィック・フォーミングの防止
- Authors: Sudipta Kar, Giuseppe Castellucci, Simone Filice, Shervin Malmasi,
Oleg Rokhlenko
- Abstract要約: マルチタスク学習(MTL)は、自然言語処理において、1つのモデルで複数の関連するタスクを学習するための標準技術として広く受け入れられている。
通常、システムは時間とともに進化するので、既存のMTLモデルに新しいタスクを追加するには、通常、すべてのタスクをスクラッチから再トレーニングする必要があります。
本稿では、n+1タスクを解くための新しいタスクに、既に訓練済みのnタスクに関するモデルの知識を蒸留することにより、MTLモデルの能力を漸進的に拡張し、新しいタスクを時間とともに解決する問題にアプローチする。
- 参考スコア(独自算出の注目度): 17.879087904904935
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-Task Learning (MTL) is widely-accepted in Natural Language Processing
as a standard technique for learning multiple related tasks in one model.
Training an MTL model requires having the training data for all tasks available
at the same time. As systems usually evolve over time, (e.g., to support new
functionalities), adding a new task to an existing MTL model usually requires
retraining the model from scratch on all the tasks and this can be
time-consuming and computationally expensive. Moreover, in some scenarios, the
data used to train the original training may be no longer available, for
example, due to storage or privacy concerns. In this paper, we approach the
problem of incrementally expanding MTL models' capability to solve new tasks
over time by distilling the knowledge of an already trained model on n tasks
into a new one for solving n+1 tasks. To avoid catastrophic forgetting, we
propose to exploit unlabeled data from the same distributions of the old tasks.
Our experiments on publicly available benchmarks show that such a technique
dramatically benefits the distillation by preserving the already acquired
knowledge (i.e., preventing up to 20% performance drops on old tasks) while
obtaining good performance on the incrementally added tasks. Further, we also
show that our approach is beneficial in practical settings by using data from a
leading voice assistant.
- Abstract(参考訳): マルチタスク学習(MTL)は、自然言語処理において、1つのモデルで複数の関連するタスクを学習するための標準技術として広く受け入れられている。
MTLモデルのトレーニングには、すべてのタスクのトレーニングデータを同時に取得する必要がある。
システムは通常、時間とともに進化するので(例えば、新しい機能をサポートするために)、既存のMTLモデルに新しいタスクを追加するには、通常、すべてのタスクをスクラッチから再トレーニングする必要がある。
さらに、いくつかのシナリオでは、例えばストレージやプライバシの懸念のために、オリジナルのトレーニングをトレーニングするために使用されるデータが利用できなくなった場合もあります。
本稿では、n+1タスクを解くための新しいタスクに、既に訓練済みのnタスクに関するモデルの知識を蒸留することにより、MTLモデルの能力を漸進的に拡張し、新しいタスクを時間とともに解決する問題にアプローチする。
破滅的な忘れ物を避けるため,従来のタスクと同じ分布からラベルのないデータを活用することを提案する。
公開ベンチマーク実験により, 既に取得した知識(すなわち, 従来のタスクにおける最大20%のパフォーマンス低下防止)を保存し, 段階的に付加されたタスクの良好な性能を得ることにより, 蒸留技術が劇的に向上することが示された。
また,提案手法は,先行音声アシスタントのデータを利用することで,実用的な場面で有益であることを示す。
関連論文リスト
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
蒸留法における人間の学習過程をエミュレートするマルチステージ知識統合ネットワーク(MulKI)を提案する。
Mulkiは、イデオロギーの排除、新しいイデオロギーの追加、イデオロギーの排除、コネクティクスの作りという4つの段階を通じてこれを達成している。
提案手法は,下流タスク間の連続学習をサポートしながら,ゼロショット能力の維持における大幅な改善を示す。
論文 参考訳(メタデータ) (2024-11-11T07:36:19Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Exploring intra-task relations to improve meta-learning algorithms [1.223779595809275]
我々は,タスクの効果的なミニバッチによるトレーニング安定性向上のために,タスク関係の外部知識を活用することを目的としている。
ミニバッチでタスクの多様なセットを選択すると、完全な勾配がより良く見積もられるため、トレーニングにおけるノイズの低減につながる、という仮説を立てる。
論文 参考訳(メタデータ) (2023-12-27T15:33:52Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Lifelong Learning of Few-shot Learners across NLP Tasks [45.273018249235705]
私たちは、さまざまなNLPタスクのシーケンスを通じて、生涯学習の難しさを研究します。
アダプタウェイトの生成をいくつかの例から学ぶ,継続的なメタラーニングアプローチを提案する。
私たちのアプローチは、トレーニングタスクよりもモデルのパフォーマンスを維持し、将来のタスクが学習されるとポジティブな知識伝達につながります。
論文 参考訳(メタデータ) (2021-04-18T10:41:56Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
ディープラーニングモデルは、インクリメンタルな学習環境で訓練されたときに壊滅的な忘れに苦しむ。
タスクインクリメンタル学習問題に対処するための新しいアプローチを提案する。これは、インクリメンタルに到着する新しいタスクに関するモデルをトレーニングすることを含む。
私たちのアプローチは、ゼロショットと非ゼロショットタスクインクリメンタルラーニング設定の両方で使用できます。
論文 参考訳(メタデータ) (2021-03-30T18:11:30Z) - Learning Adaptable Policy via Meta-Adversarial Inverse Reinforcement
Learning for Decision-making Tasks [2.1485350418225244]
Meta- LearningとAdversarial Inverseforcement Learningを統合した適応型模倣学習モデルを構築します。
敵対的学習と逆強化学習メカニズムを利用して、利用可能なトレーニングタスクからポリシーと報酬機能を同時に学習します。
論文 参考訳(メタデータ) (2021-03-23T17:16:38Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z) - Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning
in NLP Using Fewer Parameters & Less Data [5.689320790746046]
マルチタスク学習(MTL)ネットワークは、異なるタスク間で学習知識を伝達するための有望な方法として登場した。
しかし、MTLは、低リソースタスクへの過度な適合、破滅的な忘れ込み、負のタスク転送といった課題に対処しなければならない。
本稿では,新しい条件付アテンション機構とタスク条件付きモジュール群からなるトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-09-19T02:04:34Z) - Continual Learning Using Multi-view Task Conditional Neural Networks [6.27221711890162]
従来のディープラーニングモデルは、複数のタスクを逐次学習する能力に制限がある。
再帰的なタスクを事前に知る必要のないマルチビュータスク条件ニューラルネットワーク(Mv-TCNN)を提案する。
論文 参考訳(メタデータ) (2020-05-08T01:03:30Z) - iTAML: An Incremental Task-Agnostic Meta-learning Approach [123.10294801296926]
人間は経験が成長するにつれて、新しい知識を継続的に学ぶことができる。
ディープニューラルネットワークにおける以前の学習は、新しいタスクでトレーニングされたときにすぐに消えてしまう可能性がある。
遭遇した全てのタスク間の平衡を維持するために,新しいメタラーニング手法を導入する。
論文 参考訳(メタデータ) (2020-03-25T21:42:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。