Hidden Incentives for Auto-Induced Distributional Shift
- URL: http://arxiv.org/abs/2009.09153v1
- Date: Sat, 19 Sep 2020 03:31:27 GMT
- Title: Hidden Incentives for Auto-Induced Distributional Shift
- Authors: David Krueger, Tegan Maharaj, Jan Leike
- Abstract summary: We introduce the term auto-induced distributional shift (ADS) to describe the phenomenon of an algorithm causing a change in the distribution of its own inputs.
Our goal is to ensure that machine learning systems do not leverage ADS to increase performance when doing so could be undesirable.
We demonstrate that changes to the learning algorithm, such as the introduction of meta-learning, can cause hidden incentives for auto-induced distributional shift (HI-ADS) to be revealed.
- Score: 11.295927026302573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decisions made by machine learning systems have increasing influence on the
world, yet it is common for machine learning algorithms to assume that no such
influence exists. An example is the use of the i.i.d. assumption in content
recommendation. In fact, the (choice of) content displayed can change users'
perceptions and preferences, or even drive them away, causing a shift in the
distribution of users. We introduce the term auto-induced distributional shift
(ADS) to describe the phenomenon of an algorithm causing a change in the
distribution of its own inputs. Our goal is to ensure that machine learning
systems do not leverage ADS to increase performance when doing so could be
undesirable. We demonstrate that changes to the learning algorithm, such as the
introduction of meta-learning, can cause hidden incentives for auto-induced
distributional shift (HI-ADS) to be revealed. To address this issue, we
introduce `unit tests' and a mitigation strategy for HI-ADS, as well as a toy
environment for modelling real-world issues with HI-ADS in content
recommendation, where we demonstrate that strong meta-learners achieve gains in
performance via ADS. We show meta-learning and Q-learning both sometimes fail
unit tests, but pass when using our mitigation strategy.
Related papers
- OpenNet: Incremental Learning for Autonomous Driving Object Detection
with Balanced Loss [3.761247766448379]
The proposed method can obtain better performance than that of the existing methods.
The Experimental results upon the CODA dataset show that the proposed method can obtain better performance than that of the existing methods.
arXiv Detail & Related papers (2023-11-25T06:02:50Z) - Making Users Indistinguishable: Attribute-wise Unlearning in Recommender
Systems [28.566330708233824]
We find that attackers can extract private information, i.e., gender, race, and age, from a trained model even if it has not been explicitly encountered during training.
To protect the sensitive attribute of users, Attribute Unlearning (AU) aims to degrade attacking performance and make target attributes indistinguishable.
arXiv Detail & Related papers (2023-10-06T09:36:44Z) - Augmentation-aware Self-supervised Learning with Conditioned Projector [6.720605329045581]
Self-supervised learning (SSL) is a powerful technique for learning from unlabeled data.
We propose to foster sensitivity to characteristics in the representation space by modifying the projector network.
Our approach, coined Conditional Augmentation-aware Self-supervised Learning (CASSLE), is directly applicable to typical joint-embedding SSL methods.
arXiv Detail & Related papers (2023-05-31T12:24:06Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z) - PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning [102.36450942613091]
We propose an inverse reinforcement learning algorithm, called emphinverse temporal difference learning (ITD)
We show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $Psi Phi$-learning.
arXiv Detail & Related papers (2021-02-24T21:12:09Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
Domain adaptation experiments using WSJ as a source domain and TED-LIUM 3 as well as SWITCHBOARD show that up to 80% of the performance of a system trained on ground-truth data can be recovered.
arXiv Detail & Related papers (2020-11-26T18:51:26Z) - Hyperparameter Auto-tuning in Self-Supervised Robotic Learning [12.193817049957733]
Insufficient learning (due to convergence to local optima) results in under-performing policies whilst redundant learning wastes time and resources.
We propose an auto-tuning technique based on the Evidence Lower Bound (ELBO) for self-supervised reinforcement learning.
Our method can auto-tune online and yields the best performance at a fraction of the time and computational resources.
arXiv Detail & Related papers (2020-10-16T08:58:24Z) - Adversarial Machine Learning in Network Intrusion Detection Systems [6.18778092044887]
We study the nature of the adversarial problem in Network Intrusion Detection Systems.
We use evolutionary computation (particle swarm optimization and genetic algorithm) and deep learning (generative adversarial networks) as tools for adversarial example generation.
Our work highlights the vulnerability of machine learning based NIDS in the face of adversarial perturbation.
arXiv Detail & Related papers (2020-04-23T19:47:43Z) - Guided Variational Autoencoder for Disentanglement Learning [79.02010588207416]
We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning.
We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE.
arXiv Detail & Related papers (2020-04-02T20:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.