論文の概要: Expectation propagation on the diluted Bayesian classifier
- arxiv url: http://arxiv.org/abs/2009.09545v2
- Date: Sun, 31 Jan 2021 00:46:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 12:53:33.700953
- Title: Expectation propagation on the diluted Bayesian classifier
- Title(参考訳): 希釈ベイズ分類器の期待伝搬
- Authors: Alfredo Braunstein, Thomas Gueudr\'e, Andrea Pagnani and Mirko
Pieropan
- Abstract要約: 本稿では,二項分類の文脈におけるスパース特徴選択の問題に対処する統計力学にインスパイアされた戦略を導入する。
予測伝搬(EP)として知られる計算スキームは、分類規則を学習する連続重みの知覚を訓練するために用いられる。
EPは、変数選択特性、推定精度、計算複雑性の点で頑健で競争力のあるアルゴリズムである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient feature selection from high-dimensional datasets is a very
important challenge in many data-driven fields of science and engineering. We
introduce a statistical mechanics inspired strategy that addresses the problem
of sparse feature selection in the context of binary classification by
leveraging a computational scheme known as expectation propagation (EP). The
algorithm is used in order to train a continuous-weights perceptron learning a
classification rule from a set of (possibly partly mislabeled) examples
provided by a teacher perceptron with diluted continuous weights. We test the
method in the Bayes optimal setting under a variety of conditions and compare
it to other state-of-the-art algorithms based on message passing and on
expectation maximization approximate inference schemes. Overall, our
simulations show that EP is a robust and competitive algorithm in terms of
variable selection properties, estimation accuracy and computational
complexity, especially when the student perceptron is trained from correlated
patterns that prevent other iterative methods from converging. Furthermore, our
numerical tests demonstrate that the algorithm is capable of learning online
the unknown values of prior parameters, such as the dilution level of the
weights of the teacher perceptron and the fraction of mislabeled examples,
quite accurately. This is achieved by means of a simple maximum likelihood
strategy that consists in minimizing the free energy associated with the EP
algorithm.
- Abstract(参考訳): 高次元データセットからの効率的な特徴選択は、科学と工学の多くのデータ駆動分野において非常に重要な課題である。
本稿では,予測伝搬(EP)と呼ばれる計算手法を利用して,二項分類におけるスパース特徴選択の問題に対処する統計力学に基づく戦略を提案する。
このアルゴリズムは、教師パーセプトロンが希薄な連続重みで提供した一連の(おそらく一部は誤ラベルされた)例から分類規則を学習する連続重みを訓練するために使用される。
様々な条件下でベイズ最適設定でこの手法をテストし、メッセージパッシングと期待最大化近似推論スキームに基づいて、他の最先端アルゴリズムと比較する。
全体として,epは,変数選択特性,推定精度,計算複雑性の観点から,特に他の反復的手法が収束するのを防ぐ相関パターンから学生パーセプトロンを訓練する場合において,頑健で競争力のあるアルゴリズムであることが示された。
さらに,本アルゴリズムは,教師パーセプトロンの重みの希釈レベルや,誤ラベルされたサンプルのごく一部など,事前パラメータの未知の値をオンラインで学習できることを示す。
これはepアルゴリズムに付随する自由エネルギーの最小化を主目的とする単純な最大度戦略によって達成される。
関連論文リスト
- A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
本稿では,高次元量子化予測のための確率論的機械学習手法を提案する。
擬似ベイズ的フレームワークとスケールした学生tとランゲヴィン・モンテカルロを併用して効率的な計算を行う。
その効果はシミュレーションや実世界のデータを通じて検証され、そこでは確立された頻繁な手法やベイズ的手法と競合する。
論文 参考訳(メタデータ) (2024-09-03T08:01:01Z) - Learning to sample fibers for goodness-of-fit testing [0.0]
離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「よい動きを学ぶための強化学習アプローチ」を示す。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
論文 参考訳(メタデータ) (2024-05-22T19:33:58Z) - Efficient and Near-Optimal Smoothed Online Learning for Generalized
Linear Functions [28.30744223973527]
我々は,K-wise線形分類において,統計学的に最適なログ(T/sigma)の後悔を初めて楽しむ計算効率のよいアルゴリズムを提案する。
一般化線形分類器によって誘導される不一致領域の幾何学の新たな特徴付けを開発する。
論文 参考訳(メタデータ) (2022-05-25T21:31:36Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
非定常環境におけるポリシーを効率的に学習するアルゴリズムを導入する。
これは、リアルタイム、高信頼な変更点検出統計において、潜在的に無限のデータストリームと計算を解析する。
i) このアルゴリズムは, 予期せぬ状況変化が検出されるまでの遅延を最小限に抑え, 迅速な応答を可能にする。
論文 参考訳(メタデータ) (2021-05-20T01:57:52Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - On Last-Layer Algorithms for Classification: Decoupling Representation
from Uncertainty Estimation [27.077741143188867]
本稿では,分類課題を表現学習と不確実性推定の2段階に分けたアルゴリズム群を提案する。
選択的分類(リスクカバレッジ)および分布外サンプルの検出能力の観点から,それらの性能を評価する。
論文 参考訳(メタデータ) (2020-01-22T15:08:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。