論文の概要: Learning to sample fibers for goodness-of-fit testing
- arxiv url: http://arxiv.org/abs/2405.13950v2
- Date: Thu, 17 Oct 2024 23:48:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:14.327254
- Title: Learning to sample fibers for goodness-of-fit testing
- Title(参考訳): 適合性試験のための繊維試料の学習
- Authors: Ivan Gvozdanović, Sonja Petrović,
- Abstract要約: 離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「よい動きを学ぶための強化学習アプローチ」を示す。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We consider the problem of constructing exact goodness-of-fit tests for discrete exponential family models. This classical problem remains practically unsolved for many types of structured or sparse data, as it rests on a computationally difficult core task: to produce a reliable sample from lattice points in a high-dimensional polytope. We translate the problem into a Markov decision process and demonstrate a reinforcement learning approach for learning `good moves' for sampling. We illustrate the approach on data sets and models for which traditional MCMC samplers converge too slowly due to problem size, sparsity structure, and the requirement to use prohibitive non-linear algebra computations in the process. The differentiating factor is the use of scalable tools from \emph{linear} algebra in the context of theoretical guarantees provided by \emph{non-linear} algebra. Our algorithm is based on an actor-critic sampling scheme, with provable convergence. The discovered moves can be used to efficiently obtain an exchangeable sample, significantly cutting computational times with regards to statistical testing.
- Abstract(参考訳): 離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この古典的な問題は、高次元ポリトープの格子点から信頼できるサンプルを生成するという、計算的に難しいコアタスクに頼っているため、多くの構造化データやスパースデータに対して事実上未解決のままである。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「良い動き」を学習するための強化学習アプローチを示す。
本稿では,従来のMCMCサンプリング器は,問題の大きさや空間構造,非線型代数計算をプロセスで使用する必要性などにより,処理速度が低すぎるようなデータ集合やモデルに対するアプローチについて述べる。
微分係数は、 \emph{non-linear} 代数によって提供される理論的保証の文脈における \emph{linear} 代数からのスケーラブルなツールの使用である。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
検出された動きは、交換可能なサンプルを効率的に取得するために使用することができ、統計検査に関して計算時間を著しく短縮することができる。
関連論文リスト
- Symmetry Nonnegative Matrix Factorization Algorithm Based on Self-paced Learning [10.6600050775306]
モデルのクラスタリング性能を向上させるために, 対称非負行列分解法を提案した。
全ての試料の難易度を測定できる重み変数を割り当てた。
実験の結果,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2024-10-20T06:33:02Z) - Integer Programming for Learning Directed Acyclic Graphs from Non-identifiable Gaussian Models [6.54203362045253]
本研究では,連続観測データから有向非巡回グラフを学習する問題について検討する。
中規模の問題を学習するための混合整数プログラミングフレームワークを開発した。
提案手法は最先端のアルゴリズムより優れ,ノイズの不均一性に対して頑健である。
論文 参考訳(メタデータ) (2024-04-19T02:42:13Z) - Sparse Variational Student-t Processes [8.46450148172407]
学生Tプロセスは、重い尾の分布とデータセットをアウトリーチでモデル化するために使用される。
本研究では,学生プロセスが現実のデータセットに対してより柔軟になるためのスパース表現フレームワークを提案する。
UCIとKaggleの様々な合成および実世界のデータセットに対する2つの提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-12-09T12:55:20Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Expectation propagation on the diluted Bayesian classifier [0.0]
本稿では,二項分類の文脈におけるスパース特徴選択の問題に対処する統計力学にインスパイアされた戦略を導入する。
予測伝搬(EP)として知られる計算スキームは、分類規則を学習する連続重みの知覚を訓練するために用いられる。
EPは、変数選択特性、推定精度、計算複雑性の点で頑健で競争力のあるアルゴリズムである。
論文 参考訳(メタデータ) (2020-09-20T23:59:44Z) - Effective Proximal Methods for Non-convex Non-smooth Regularized
Learning [27.775096437736973]
独立サンプリング方式は、一般に使用されている一様サンプリング方式の性能を向上させる傾向にあることを示す。
我々の新しい分析は、サンプリングの速度が今までで最高のものより速いことも示しています。
論文 参考訳(メタデータ) (2020-09-14T16:41:32Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。