論文の概要: RL STaR Platform: Reinforcement Learning for Simulation based Training
of Robots
- arxiv url: http://arxiv.org/abs/2009.09595v1
- Date: Mon, 21 Sep 2020 03:09:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 04:33:51.701771
- Title: RL STaR Platform: Reinforcement Learning for Simulation based Training
of Robots
- Title(参考訳): rl star platform: ロボットのシミュレーションベーストレーニングのための強化学習
- Authors: Tamir Blum, Gabin Paillet, Mickael Laine, Kazuya Yoshida
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、宇宙ロボット工学における自律性と意思決定能力を高めるための、有望な分野である。
本稿では,RL STaRプラットフォームについて紹介する。
- 参考スコア(独自算出の注目度): 3.249853429482705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) is a promising field to enhance robotic autonomy
and decision making capabilities for space robotics, something which is
challenging with traditional techniques due to stochasticity and uncertainty
within the environment. RL can be used to enable lunar cave exploration with
infrequent human feedback, faster and safer lunar surface locomotion or the
coordination and collaboration of multi-robot systems. However, there are many
hurdles making research challenging for space robotic applications using RL and
machine learning, particularly due to insufficient resources for traditional
robotics simulators like CoppeliaSim. Our solution to this is an open source
modular platform called Reinforcement Learning for Simulation based Training of
Robots, or RL STaR, that helps to simplify and accelerate the application of RL
to the space robotics research field. This paper introduces the RL STaR
platform, and how researchers can use it through a demonstration.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、宇宙ロボットの自律性と意思決定能力を高めるための有望な分野である。
RLは、人間のフィードバックの少ない月面洞窟探査、より高速で安全な月面移動、マルチロボットシステムの協調と協調を可能にするために使用できる。
しかし、特にCoppeliaSimのような従来のロボットシミュレーターのリソース不足のため、RLと機械学習を使った宇宙ロボット応用の研究に挑戦するハードルが数多くある。
我々のソリューションはReinforcement Learning for Simulation based Training of Robots(RL STaR)と呼ばれるオープンソースのモジュラープラットフォームで、宇宙ロボット研究分野へのRLの応用を簡素化し、加速するのに役立ちます。
本稿では,RL STaRプラットフォームについて紹介する。
関連論文リスト
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
アクチュエータレベルでの不正確なトルクトラッキングから生じるヒューマノイドロボットのシム2リアルギャップ問題を克服するためのアプローチを提案する。
提案手法は、実際のHRP-5Pヒューマノイドロボットに展開して二足歩行を実現するシミュレーションにおいて、一貫したエンドツーエンドのポリシーをトレーニングする。
論文 参考訳(メタデータ) (2023-03-07T08:16:46Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
深層強化学習は、制御されていない環境での学習ポリシーに対する有望なアプローチである。
機械学習アルゴリズムとライブラリの最近の進歩と、慎重に調整されたロボットコントローラを組み合わせることで、現実世界では4分で学習できる。
論文 参考訳(メタデータ) (2022-08-16T17:37:36Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - SurRoL: An Open-source Reinforcement Learning Centered and dVRK
Compatible Platform for Surgical Robot Learning [78.76052604441519]
SurRoLは、ダ・ヴィンチ・リサーチキット(dVRK)と互換性のある外科ロボット学習のためのRL中心のシミュレーションプラットフォームである。
プラットフォームには10の学習ベースの外科的タスクが構築されており、実際の自律的な外科的実行に共通している。
シミュレーションにおいてRLアルゴリズムを用いてSurRoLの評価を行い、奥行き分析を行い、実際のdVRKにトレーニングされたポリシーをデプロイし、実世界でより優れた転送性を実現することを示す。
論文 参考訳(メタデータ) (2021-08-30T07:43:47Z) - How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
Learned [111.06812202454364]
本稿では,ロボット深部RLのケーススタディをいくつか紹介する。
深部RLにおける一般的な課題と,それらの課題について論じる。
また、他の卓越した課題についても概説し、その多くが現実世界のロボティクスの設定に特有のものである。
論文 参考訳(メタデータ) (2021-02-04T22:09:28Z) - Robust Reinforcement Learning-based Autonomous Driving Agent for
Simulation and Real World [0.0]
本稿では,Deep Q-Networks (DQN) を用いた自律型ロボット制御を実現するDRLベースのアルゴリズムを提案する。
本手法では,エージェントはシミュレーション環境で訓練され,シミュレーション環境と実環境環境の両方をナビゲートすることができる。
トレーニングされたエージェントは限られたハードウェアリソース上で動作することができ、そのパフォーマンスは最先端のアプローチに匹敵する。
論文 参考訳(メタデータ) (2020-09-23T15:23:54Z) - robo-gym -- An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots [0.5161531917413708]
本稿では,ロボットによる深層強化学習を向上するためのオープンソースのツールキット,robo-gymを提案する。
シミュレーションにおけるトレーニングからロボットへのシームレスな移動を可能にするシミュレーション環境と実環境の統一的なセットアップを実証する。
産業用ロボットを特徴とする2つの実世界アプリケーションを用いて,本フレームワークの能力と有効性を示す。
論文 参考訳(メタデータ) (2020-07-06T13:51:33Z) - Learning to Play Table Tennis From Scratch using Muscular Robots [34.34824536814943]
この研究は、(a)人為的ロボットアームを用いた安全クリティカルな動的タスクを初めて学習し、(b)PAM駆動システムで精度の高い要求問題を学び、(c)本物のボールなしで卓球をするようにロボットを訓練する。
ビデオとデータセットは muscleTT.embodied.ml で入手できる。
論文 参考訳(メタデータ) (2020-06-10T16:43:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。