論文の概要: A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2208.07860v1
- Date: Tue, 16 Aug 2022 17:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-17 12:48:01.620879
- Title: A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning
- Title(参考訳): 公園の散歩:モデルフリーの強化学習で20分で歩くことを学ぶ
- Authors: Laura Smith, Ilya Kostrikov, Sergey Levine
- Abstract要約: 深層強化学習は、制御されていない環境での学習ポリシーに対する有望なアプローチである。
機械学習アルゴリズムとライブラリの最近の進歩と、慎重に調整されたロボットコントローラを組み合わせることで、現実世界では4分で学習できる。
- 参考スコア(独自算出の注目度): 86.06110576808824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning is a promising approach to learning policies in
uncontrolled environments that do not require domain knowledge. Unfortunately,
due to sample inefficiency, deep RL applications have primarily focused on
simulated environments. In this work, we demonstrate that the recent
advancements in machine learning algorithms and libraries combined with a
carefully tuned robot controller lead to learning quadruped locomotion in only
20 minutes in the real world. We evaluate our approach on several indoor and
outdoor terrains which are known to be challenging for classical model-based
controllers. We observe the robot to be able to learn walking gait consistently
on all of these terrains. Finally, we evaluate our design decisions in a
simulated environment.
- Abstract(参考訳): 深層強化学習は、ドメイン知識を必要としない制御されていない環境での学習方針に有望なアプローチである。
残念ながら、サンプルの非効率のため、ディープRLアプリケーションは主にシミュレーション環境に焦点を当てている。
本研究では,近年の機械学習アルゴリズムとライブラリの進歩と,ロボット制御の微調整が組み合わさって,現実世界でわずか20分間で四足歩行を学習できることを実証する。
我々は,古典的モデルベースコントローラでは困難であることが知られている屋内および屋外の地形に対するアプローチを評価する。
ロボットは、これらすべての地形で一貫して歩行を学べるように観察する。
最後に,シミュレーション環境において設計判断を評価する。
関連論文リスト
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Adaptive Mobile Manipulation for Articulated Objects In the Open World [37.34288363863099]
リアルな調音オブジェクト操作に対処するために,オープンワールド移動操作システムを導入する。
このシステムは、BCの50%の事前トレーニングから、オンライン適応を使用して95%まで、成功率を高めることができる。
論文 参考訳(メタデータ) (2024-01-25T18:59:44Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
実世界におけるヒューマノイド移動に対する完全学習型アプローチを提案する。
コントローラーは様々な屋外の地形の上を歩けるし、外乱に対して頑丈で、状況に応じて適応できる。
論文 参考訳(メタデータ) (2023-03-06T18:59:09Z) - Discrete Control in Real-World Driving Environments using Deep
Reinforcement Learning [2.467408627377504]
本研究では,現実の環境をゲーム環境に移行させる,現実の運転環境におけるフレームワーク(知覚,計画,制御)を紹介する。
実環境における離散制御を学習し,実行するために,既存の強化学習(RL)アルゴリズムを多エージェント設定で提案する。
論文 参考訳(メタデータ) (2022-11-29T04:24:03Z) - Learning Perception-Aware Agile Flight in Cluttered Environments [38.59659342532348]
乱雑な環境下での知覚に敏感で最小時間飛行を実現するニューラルネットワークポリシーを学習する手法を提案する。
提案手法は認識と制御を密に結合し,計算速度(10倍高速)と成功率に有意な優位性を示す。
本研究では, クローズドループ制御性能を最大50km/hの速さで実機とハードウェア・イン・ザ・ループシミュレーションを用いて実証する。
論文 参考訳(メタデータ) (2022-10-04T18:18:58Z) - Learning to Walk by Steering: Perceptive Quadrupedal Locomotion in
Dynamic Environments [25.366480092589022]
四足歩行ロボットは、環境の乱雑さや移動する障害物に応答して、頑丈で機敏な歩行行動を示す必要がある。
本稿では,知覚的移動の問題をハイレベルな意思決定に分解する,PreLUDEという階層型学習フレームワークを提案する。
シミュレーションおよびハードウェア実験において,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-09-19T17:55:07Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z) - Learning to Walk in the Real World with Minimal Human Effort [80.7342153519654]
我々は,人間の努力を最小限に抑えて,現実世界の深いRLを用いた足の移動ポリシーを学習するシステムを開発した。
人間の介入がほとんどないミニチュアロボットにおいて,ロボットの移動スキルを自動的かつ効率的に学習することができる。
論文 参考訳(メタデータ) (2020-02-20T03:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。