Reinforcement Learning Approaches in Social Robotics
- URL: http://arxiv.org/abs/2009.09689v4
- Date: Thu, 11 Feb 2021 16:44:08 GMT
- Title: Reinforcement Learning Approaches in Social Robotics
- Authors: Neziha Akalin and Amy Loutfi
- Abstract summary: This article surveys reinforcement learning approaches in social robotics.
Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots.
- Score: 3.9523548427618067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article surveys reinforcement learning approaches in social robotics.
Reinforcement learning is a framework for decision-making problems in which an
agent interacts through trial-and-error with its environment to discover an
optimal behavior. Since interaction is a key component in both reinforcement
learning and social robotics, it can be a well-suited approach for real-world
interactions with physically embodied social robots. The scope of the paper is
focused particularly on studies that include social physical robots and
real-world human-robot interactions with users. We present a thorough analysis
of reinforcement learning approaches in social robotics. In addition to a
survey, we categorize existent reinforcement learning approaches based on the
used method and the design of the reward mechanisms. Moreover, since
communication capability is a prominent feature of social robots, we discuss
and group the papers based on the communication medium used for reward
formulation. Considering the importance of designing the reward function, we
also provide a categorization of the papers based on the nature of the reward.
This categorization includes three major themes: interactive reinforcement
learning, intrinsically motivated methods, and task performance-driven methods.
The benefits and challenges of reinforcement learning in social robotics,
evaluation methods of the papers regarding whether or not they use subjective
and algorithmic measures, a discussion in the view of real-world reinforcement
learning challenges and proposed solutions, the points that remain to be
explored, including the approaches that have thus far received less attention
is also given in the paper. Thus, this paper aims to become a starting point
for researchers interested in using and applying reinforcement learning methods
in this particular research field.
Related papers
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in AI.
Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment.
arXiv Detail & Related papers (2024-08-21T11:32:09Z) - Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
We test how affective-linguistic communication, in combination with differential outcomes training, affects mutual learning in a human-robot context.
Taking inspiration from child- caregiver dynamics, our human-robot interaction setup consists of a (simulated) robot attempting to learn how best to communicate internal, homeostatically-controlled needs.
arXiv Detail & Related papers (2024-07-01T13:35:08Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - A Concise Introduction to Reinforcement Learning in Robotics [0.0]
This paper aims to serve as a reference guide for researchers in reinforcement learning applied to the field of robotics.
We have covered the most essential concepts required for research in the field of reinforcement learning, with robotics in mind.
arXiv Detail & Related papers (2022-10-13T22:29:42Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
We argue that social navigation models can replicate, promote, and amplify societal unfairness such as discrimination and segregation.
Our proposed framework consists of two components: textitlearning which incorporates social context into the learning process to account for safety and comfort, and textitrelearning to detect and correct potentially harmful outcomes before the onset.
arXiv Detail & Related papers (2021-01-07T17:42:35Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Towards hybrid primary intersubjectivity: a neural robotics library for
human science [4.232614032390374]
We study primary intersubjectivity as a second person perspective experience characterized by predictive engagement.
We propose an open-source methodology named textitneural robotics library (NRL) for experimental human-robot interaction.
We discuss some ways human-robot (hybrid) intersubjectivity can contribute to human science research.
arXiv Detail & Related papers (2020-06-29T11:35:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.