Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2306.10071v1
- Date: Thu, 15 Jun 2023 20:50:05 GMT
- Title: Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning
- Authors: Alireza Shamsoshoara, Fatemeh Lotfi, Sajad Mousavi, Fatemeh Afghah,
Ismail Guvenc
- Abstract summary: This paper investigates an interference-aware joint path planning and power allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment.
The UAV aims to maximize its uplink throughput and minimize the level of interference to the ground user equipment (UEs) connected to the neighbor cellular BSs.
An apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning and deep reinforcement learning (DRL)
- Score: 7.760962597460447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates an interference-aware joint path planning and power
allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in
a sparse suburban environment. The UAV's goal is to fly from an initial point
and reach a destination point by moving along the cells to guarantee the
required quality of service (QoS). In particular, the UAV aims to maximize its
uplink throughput and minimize the level of interference to the ground user
equipment (UEs) connected to the neighbor cellular BSs, considering the
shortest path and flight resource limitation. Expert knowledge is used to
experience the scenario and define the desired behavior for the sake of the
agent (i.e., UAV) training. To solve the problem, an apprenticeship learning
method is utilized via inverse reinforcement learning (IRL) based on both
Q-learning and deep reinforcement learning (DRL). The performance of this
method is compared to learning from a demonstration technique called behavioral
cloning (BC) using a supervised learning approach. Simulation and numerical
results show that the proposed approach can achieve expert-level performance.
We also demonstrate that, unlike the BC technique, the performance of our
proposed approach does not degrade in unseen situations.
Related papers
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Self-Inspection Method of Unmanned Aerial Vehicles in Power Plants Using
Deep Q-Network Reinforcement Learning [0.0]
The research proposes a power plant inspection system incorporating UAV autonomous navigation and DQN reinforcement learning.
The trained model makes it more likely that the inspection strategy will be applied in practice by enabling the UAV to move around on its own in difficult environments.
arXiv Detail & Related papers (2023-03-16T00:58:50Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Federated Learning for UAV Swarms Under Class Imbalance and Power
Consumption Constraints [6.995852507959362]
It is imperative to investigate the performance of UAV utilization while considering their design limitations.
This paper investigates the deployment of UAV swarms when each UAV carries a machine learning classification task.
arXiv Detail & Related papers (2021-08-23T16:10:14Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
We propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV.
We show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter.
arXiv Detail & Related papers (2020-09-21T12:35:23Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
We propose a new end-to-end reinforcement learning approach to UAV-enabled data collection from Internet of Things (IoT) devices.
An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance.
We show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters.
arXiv Detail & Related papers (2020-07-01T15:14:16Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.