GLL: A Differentiable Graph Learning Layer for Neural Networks
- URL: http://arxiv.org/abs/2412.08016v1
- Date: Wed, 11 Dec 2024 01:54:29 GMT
- Title: GLL: A Differentiable Graph Learning Layer for Neural Networks
- Authors: Jason Brown, Bohan Chen, Harris Hardiman-Mostow, Jeff Calder, Andrea L. Bertozzi,
- Abstract summary: Graph-based learning techniques, namely Laplace learning, have been combined with neural networks for both supervised and semi-supervised learning (SSL) tasks.
In this work, we derive backpropagation equations, via the adjoint method, for inclusion of a general family of graph learning layers into a neural network.
This allows us to precisely integrate graph Laplacian-based label propagation into a neural network layer, replacing a projection head and softmax activation function for classification tasks.
- Score: 8.149825561954607
- License:
- Abstract: Standard deep learning architectures used for classification generate label predictions with a projection head and softmax activation function. Although successful, these methods fail to leverage the relational information between samples in the batch for generating label predictions. In recent works, graph-based learning techniques, namely Laplace learning, have been heuristically combined with neural networks for both supervised and semi-supervised learning (SSL) tasks. However, prior works approximate the gradient of the loss function with respect to the graph learning algorithm or decouple the processes; end-to-end integration with neural networks is not achieved. In this work, we derive backpropagation equations, via the adjoint method, for inclusion of a general family of graph learning layers into a neural network. This allows us to precisely integrate graph Laplacian-based label propagation into a neural network layer, replacing a projection head and softmax activation function for classification tasks. Using this new framework, our experimental results demonstrate smooth label transitions across data, improved robustness to adversarial attacks, improved generalization, and improved training dynamics compared to the standard softmax-based approach.
Related papers
- Neural Network-Based Score Estimation in Diffusion Models: Optimization
and Generalization [12.812942188697326]
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness.
A key component of these models is to learn the score function through score matching.
Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy.
arXiv Detail & Related papers (2024-01-28T08:13:56Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Improving Graph Neural Networks with Simple Architecture Design [7.057970273958933]
We introduce several key design strategies for graph neural networks.
We present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN)
We show that the proposed model outperforms other state of the art GNN models and achieves up to 64% improvements in accuracy on node classification tasks.
arXiv Detail & Related papers (2021-05-17T06:46:01Z) - A Unifying Generative Model for Graph Learning Algorithms: Label
Propagation, Graph Convolutions, and Combinations [39.8498896531672]
Semi-supervised learning on graphs is a widely applicable problem in network science and machine learning.
We develop a Markov random field model for the data generation process of node attributes.
We show that label propagation, a linearized graph convolutional network, and their combination can all be derived as conditional expectations.
arXiv Detail & Related papers (2021-01-19T17:07:08Z) - Generalized Leverage Score Sampling for Neural Networks [82.95180314408205]
Leverage score sampling is a powerful technique that originates from theoretical computer science.
In this work, we generalize the results in [Avron, Kapralov, Musco, Musco, Velingker and Zandieh 17] to a broader class of kernels.
arXiv Detail & Related papers (2020-09-21T14:46:01Z) - Directed hypergraph neural network [0.0]
We will present the novel neural network method for directed hypergraph.
The two datasets that are used in the experiments are the cora and the citeseer datasets.
arXiv Detail & Related papers (2020-08-09T01:39:52Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
We propose a novel graph-based active learning algorithm for the task of node classification in attributed graphs.
Our algorithm uses graph cognizant logistic regression, equivalent to a linearized graph convolutional neural network (GCN) for the prediction phase and maximizes the expected error reduction in the query phase.
We conduct experiments on five public benchmark datasets, demonstrating a significant improvement over state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-09T18:00:53Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.