Decontextualized learning for interpretable hierarchical representations
of visual patterns
- URL: http://arxiv.org/abs/2009.09893v1
- Date: Mon, 31 Aug 2020 14:47:55 GMT
- Title: Decontextualized learning for interpretable hierarchical representations
of visual patterns
- Authors: R. Ian Etheredge, Manfred Schartl, Alex Jordan
- Abstract summary: We present an algorithm and training paradigm designed specifically to address this: decontextualized hierarchical representation learning (DHRL)
DHRL address the limitations of small datasets and encourages a disentangled set of hierarchically organized features.
In addition to providing a tractable path for analyzing complex hierarchal patterns using variation inference, this approach is generative and can be directly combined with empirical and theoretical approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Apart from discriminative models for classification and object detection
tasks, the application of deep convolutional neural networks to basic research
utilizing natural imaging data has been somewhat limited; particularly in cases
where a set of interpretable features for downstream analysis is needed, a key
requirement for many scientific investigations. We present an algorithm and
training paradigm designed specifically to address this: decontextualized
hierarchical representation learning (DHRL). By combining a generative model
chaining procedure with a ladder network architecture and latent space
regularization for inference, DHRL address the limitations of small datasets
and encourages a disentangled set of hierarchically organized features. In
addition to providing a tractable path for analyzing complex hierarchal
patterns using variation inference, this approach is generative and can be
directly combined with empirical and theoretical approaches. To highlight the
extensibility and usefulness of DHRL, we demonstrate this method in application
to a question from evolutionary biology.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations [62.65877150123775]
Causal abstraction is a promising theoretical framework for explainable artificial intelligence.
Existing causal abstraction methods require a brute-force search over alignments between the high-level model and the low-level one.
We present distributed alignment search (DAS), which overcomes these limitations.
arXiv Detail & Related papers (2023-03-05T00:57:49Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Simplicial Attention Networks [0.0]
We introduce a proper self-attention mechanism able to process data components at different layers.
We learn how to weight both upper and lower neighborhoods of the given topological domain in a totally task-oriented fashion.
The proposed approach compares favorably with other methods when applied to different (inductive and transductive) tasks.
arXiv Detail & Related papers (2022-03-14T20:47:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Layer-stacked Attention for Heterogeneous Network Embedding [0.0]
Layer-stacked ATTention Embedding (LATTE) is an architecture that automatically decomposes higher-order meta relations at each layer.
LATTE offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges.
In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches.
arXiv Detail & Related papers (2020-09-17T05:13:41Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.