Application of Tensorized Neural Networks for Cloud Classification
- URL: http://arxiv.org/abs/2405.10946v1
- Date: Thu, 21 Mar 2024 06:28:22 GMT
- Title: Application of Tensorized Neural Networks for Cloud Classification
- Authors: Alifu Xiafukaiti, Devanshu Garg, Aruto Hosaka, Koichi Yanagisawa, Yuichiro Minato, Tsuyoshi Yoshida,
- Abstract summary: Convolutional neural networks (CNNs) have gained widespread usage across various fields such as weather forecasting, computer vision, autonomous driving, and medical image analysis.
However, the practical implementation and commercialization of CNNs in these domains are hindered by challenges related to model sizes, overfitting, and computational time.
We propose a groundbreaking approach that involves tensorizing the dense layers in the CNN to reduce model size and computational time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) have gained widespread usage across various fields such as weather forecasting, computer vision, autonomous driving, and medical image analysis due to its exceptional ability to extract spatial information, share parameters, and learn local features. However, the practical implementation and commercialization of CNNs in these domains are hindered by challenges related to model sizes, overfitting, and computational time. To address these limitations, our study proposes a groundbreaking approach that involves tensorizing the dense layers in the CNN to reduce model size and computational time. Additionally, we incorporate attention layers into the CNN and train it using Contrastive self-supervised learning to effectively classify cloud information, which is crucial for accurate weather forecasting. We elucidate the key characteristics of tensorized neural network (TNN), including the data compression rate, accuracy, and computational speed. The results indicate how TNN change their properties under the batch size setting.
Related papers
- Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Mining the Weights Knowledge for Optimizing Neural Network Structures [1.995792341399967]
We introduce a switcher neural network (SNN) that uses as inputs the weights of a task-specific neural network (called TNN for short)
By mining the knowledge contained in the weights, the SNN outputs scaling factors for turning off neurons in the TNN.
In terms of accuracy, we outperform baseline networks and other structure learning methods stably and significantly.
arXiv Detail & Related papers (2021-10-11T05:20:56Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMS is the first deep encoder-decoder SNN architecture for the real-world large-scale problem of motion segmentation.
We show that textitSpikeMS is capable of textitincremental predictions, or predictions from smaller amounts of test data than it is trained on.
arXiv Detail & Related papers (2021-05-13T21:34:55Z) - Examining convolutional feature extraction using Maximum Entropy (ME)
and Signal-to-Noise Ratio (SNR) for image classification [0.6875312133832078]
Convolutional Neural Networks (CNNs) specialize in feature extraction rather than function mapping.
In this paper, we examine the feature extraction capabilities of CNNs using Maximum Entropy (ME) and Signal-to-Noise Ratio (SNR)
We show that the classification accuracy or performance of CNNs is greatly dependent on the amount, complexity and quality of the signal information present in the input data.
arXiv Detail & Related papers (2021-05-10T03:58:06Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
We introduce a data model to organize the data that can be extracted from CNN models.
We then propose two ways to calculate entropy under different circumstances.
We develop a visual analysis system, CNNSlicer, to interactively explore the amount of information changes inside the model.
arXiv Detail & Related papers (2020-05-02T21:36:50Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.