論文の概要: CodeBLEU: a Method for Automatic Evaluation of Code Synthesis
- arxiv url: http://arxiv.org/abs/2009.10297v2
- Date: Sun, 27 Sep 2020 04:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 22:41:41.304936
- Title: CodeBLEU: a Method for Automatic Evaluation of Code Synthesis
- Title(参考訳): CodeBLEU:コード合成の自動評価方法
- Authors: Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel
Sundaresan, Ming Zhou, Ambrosio Blanco, Shuai Ma
- Abstract要約: コード合成の分野では、一般的に使用される評価基準はBLEUまたは完全精度である。
我々はCodeBLEUと呼ばれる新しい自動評価指標を導入する。
n-gramマッチングにおけるBLEUの強度を吸収し、抽象構文木(AST)やデータフローによるコードセマンティクスを通じてコード構文を注入する。
- 参考スコア(独自算出の注目度): 57.87741831987889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluation metrics play a vital role in the growth of an area as it defines
the standard of distinguishing between good and bad models. In the area of code
synthesis, the commonly used evaluation metric is BLEU or perfect accuracy, but
they are not suitable enough to evaluate codes, because BLEU is originally
designed to evaluate the natural language, neglecting important syntactic and
semantic features of codes, and perfect accuracy is too strict thus it
underestimates different outputs with the same semantic logic. To remedy this,
we introduce a new automatic evaluation metric, dubbed CodeBLEU. It absorbs the
strength of BLEU in the n-gram match and further injects code syntax via
abstract syntax trees (AST) and code semantics via data-flow. We conduct
experiments by evaluating the correlation coefficient between CodeBLEU and
quality scores assigned by the programmers on three code synthesis tasks, i.e.,
text-to-code, code translation, and code refinement. Experimental results show
that our proposed CodeBLEU can achieve a better correlation with programmer
assigned scores compared with BLEU and accuracy.
- Abstract(参考訳): 評価指標は、良いモデルと悪いモデルの区別の標準を定義するため、地域の成長において重要な役割を果たす。
コード合成の分野では、一般的に用いられる評価基準はBLEUまたは完全精度であるが、BLEUは元々は自然言語を評価するために設計されており、コードの重要な構文的・意味的特徴を無視しており、完全精度が厳しすぎるため、異なる出力を同じ意味論理で過小評価する。
そこで我々は,CodeBLEUと呼ばれる新しい自動評価指標を導入する。
n-gramマッチングにおけるBLEUの強度を吸収し、抽象構文木(AST)やデータフローによるコードセマンティクスを通じてコード構文を注入する。
コードブレンとプログラマが割り当てた品質スコアの相関係数、すなわち、テキストからコードへの変換、コードリファインメントの3つのコード合成タスクについて評価して実験を行う。
実験の結果,提案するcodebleuはbleuと精度に比較して,プログラマが割り当てたスコアとの相関性が向上することがわかった。
関連論文リスト
- Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective [50.261681681643076]
本稿では,SemVarEffectとSemVarBenchというベンチマークを用いて,テキスト・画像合成における入力のセマンティックな変化と出力の因果性を評価する。
本研究は,T2I合成コミュニティによるヒューマンインストラクション理解の探索を促進する効果的な評価枠組みを確立する。
論文 参考訳(メタデータ) (2024-10-14T08:45:35Z) - CodeScore-R: An Automated Robustness Metric for Assessing the FunctionalCorrectness of Code Synthesis [17.747095451792084]
本稿では,コード合成機能を評価するために,CodeScore-Rと呼ばれるロバストな自動計測手法を提案する。
JavaとPythonのコード生成とマイグレーションのタスクでは、CodeScore-Rは他のメトリクスよりも優れています。
論文 参考訳(メタデータ) (2024-06-11T02:51:17Z) - When simplicity meets effectiveness: Detecting code comments coherence with word embeddings and LSTM [6.417777780911223]
コードコメントは、プログラマに実用的な情報を提供するため、ソフトウェア開発において重要な役割を果たす。
開発者はコードを更新した後、コメントをそのまま残す傾向があり、2つのアーティファクトの間に相違が生じます。
コードスニペットが与えられたら、そのコメントが一貫性があり、コードの背後にある意図をよく反映しているかどうかを特定することが重要です。
論文 参考訳(メタデータ) (2024-05-25T15:21:27Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
そこで本研究では,コードと書き直された変種との類似性に基づいて,ゼロショット合成符号検出器を提案する。
以上の結果から,既存のテキスト用合成コンテンツ検出装置よりも顕著な向上が見られた。
論文 参考訳(メタデータ) (2024-05-25T08:57:28Z) - On the Limitations of Embedding Based Methods for Measuring Functional Correctness for Code Generation [4.065344017083881]
CodeBERTScoreのような埋め込みベースのメトリクスを使って、機能的正確性や編集作業などの有用な構造を計測する能力を分析します。
その結果,機能的正当性(0.16)との相関は弱いものの,編集作業と強く相関している(0.72)ことがわかった。
論文 参考訳(メタデータ) (2024-04-26T15:54:39Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Towards Computationally Verifiable Semantic Grounding for Language
Models [18.887697890538455]
本論文は、エンティティ関係三重項の集合として形式化された所望のセマンティックメッセージが与えられた条件モデル生成テキストとしてLMを概念化する。
LMを自動エンコーダに埋め込むと、出力が入力メッセージと同じ表現領域にあるセマンティック・フラエンシに出力を送り込む。
提案手法は,グリーディ検索のベースラインを大幅に改善することを示す。
論文 参考訳(メタデータ) (2022-11-16T17:35:52Z) - Soft-Labeled Contrastive Pre-training for Function-level Code
Representation [127.71430696347174]
textbfSoft-labeled contrastive pre-training framework with two positive sample construction method。
大規模コードコーパスにおけるコード間の関連性を考慮すると、ソフトラベル付きコントラスト付き事前学習は、きめ細かいソフトラベルを得ることができる。
SCodeRは、7つのデータセットで4つのコード関連タスクに対して、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-10-18T05:17:37Z) - Interactive Code Generation via Test-Driven User-Intent Formalization [60.90035204567797]
大きな言語モデル(LLM)は、非公式な自然言語(NL)の意図からコードを生成する。
自然言語は曖昧であり、形式的な意味論が欠けているため、正確性の概念を定義するのは難しい。
言語に依存しない抽象アルゴリズムと具体的な実装TiCoderについて述べる。
論文 参考訳(メタデータ) (2022-08-11T17:41:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。