論文の概要: ThingML+ Augmenting Model-Driven Software Engineering for the Internet
of Things with Machine Learning
- arxiv url: http://arxiv.org/abs/2009.10633v1
- Date: Tue, 22 Sep 2020 15:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 23:17:44.139107
- Title: ThingML+ Augmenting Model-Driven Software Engineering for the Internet
of Things with Machine Learning
- Title(参考訳): ThingML+ 機械学習によるモノのインターネットのためのモデル駆動ソフトウェアエンジニアリングの拡張
- Authors: Armin Moin, Stephan R\"ossler, Stephan G\"unnemann
- Abstract要約: 本稿では,ThingMLの方法論,モデリング言語,ツールサポートの拡張を目的とした研究プロジェクトであるML-Quadratの現況を紹介する。
多くの場合、IoT/CPSサービスにはシステムコンポーネントや物理プロセスが含まれています。
ストリーム処理と複合イベント処理、すなわちApache SAMOAとApamaに関して、コード生成のための2つのターゲットプラットフォームをサポートする予定です。
- 参考スコア(独自算出の注目度): 4.511923587827301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present the current position of the research project
ML-Quadrat, which aims to extend the methodology, modeling language and tool
support of ThingML - an open source modeling tool for IoT/CPS - to address
Machine Learning needs for the IoT applications. Currently, ThingML offers a
modeling language and tool support for modeling the components of the system,
their communication interfaces as well as their behaviors. The latter is done
through state machines. However, we argue that in many cases IoT/CPS services
involve system components and physical processes, whose behaviors are not well
understood in order to be modeled using state machines. Hence, quite often a
data-driven approach that enables inference based on the observed data, e.g.,
using Machine Learning is preferred. To this aim, ML-Quadrat integrates the
necessary Machine Learning concepts into ThingML both on the modeling level
(syntax and semantics of the modeling language) and on the code generators
level. We plan to support two target platforms for code generation regarding
Stream Processing and Complex Event Processing, namely Apache SAMOA and Apama.
- Abstract(参考訳): 本稿では、IoT/CPSのオープンソースモデリングツールであるThingMLの方法論、モデリング言語、ツールサポートを拡張し、IoTアプリケーションにおける機械学習のニーズに対処することを目的とした、研究プロジェクトML-Quadratの現在の位置を示す。
現在、ThingMLはモデリング言語とツールサポートを提供しており、システムのコンポーネント、通信インターフェース、振る舞いをモデリングしている。
後者はステートマシンで実行される。
しかし、多くの場合、IoT/CPSサービスにはシステムコンポーネントや物理プロセスが含まれており、状態マシンを使ってモデル化される振る舞いはよく理解されていない。
したがって、多くの場合、観察したデータに基づく推論を可能にするデータ駆動アプローチが好まれる。
この目的のために、ML-Quadratは、モデリングレベル(モデリング言語の構文とセマンティクス)とコードジェネレータレベルの両方で、必要な機械学習の概念をThingMLに統合します。
ストリーム処理と複合イベント処理、すなわちApache SAMOAとApamaに関して、コード生成のための2つのターゲットプラットフォームをサポートする予定です。
関連論文リスト
- LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - A Framework to Model ML Engineering Processes [1.9744907811058787]
機械学習(ML)ベースのシステムの開発は複雑で、多様なスキルセットを持つ複数の学際的なチームが必要である。
現在のプロセスモデリング言語は、そのようなシステムの開発を説明するには適していない。
ドメイン固有言語を中心に構築されたMLベースのソフトウェア開発プロセスのモデリングフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-04-29T09:17:36Z) - ModelScope-Agent: Building Your Customizable Agent System with
Open-source Large Language Models [74.64651681052628]
本稿では,オープンソースのLCMをコントローラとする実世界のアプリケーションのためのカスタマイズ可能なエージェントフレームワークであるModelScope-Agentを紹介する。
ユーザフレンドリーなシステムライブラリを提供し、カスタマイズ可能なエンジン設計により、複数のオープンソースLLMでモデルトレーニングをサポートする。
ツール使用データ収集、ツール検索、ツール登録、メモリ制御、カスタマイズされたモデルトレーニング、評価にまたがる包括的なフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-09-02T16:50:30Z) - Machine Learning-Enabled Software and System Architecture Frameworks [48.87872564630711]
データサイエンスと機械学習に関連する関心事、例えばデータサイエンティストやデータエンジニアの利害関係者は、まだ既存のアーキテクチャフレームワークには含まれていない。
10か国25以上の組織から61名の被験者を対象に調査を行った。
論文 参考訳(メタデータ) (2023-08-09T21:54:34Z) - MDE for Machine Learning-Enabled Software Systems: A Case Study and
Comparison of MontiAnna & ML-Quadrat [5.839906946900443]
我々は,モノのインターネット(IoT)分野に着目した機械学習対応ソフトウェアシステムの開発に,MDEパラダイムを採用することを提案する。
ケーススタディで実証されたように、最先端のオープンソースモデリングツールであるMontiAnnaとML-Quadratが、この目的のためにどのように使用できるかを説明します。
論文 参考訳(メタデータ) (2022-09-15T13:21:16Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
本稿では,Semantic Low-Code Engineering for ML Applications (SeLoC-ML) というフレームワークを提案する。
SeLoC-MLは、非専門家が大規模なMLモデルやデバイスをモデル化し、発見し、再利用することを可能にする。
開発者は、レシピと呼ばれるセマンティックなアプリケーションテンプレートから、エンドユーザアプリケーションのプロトタイプを高速に作成できる。
論文 参考訳(メタデータ) (2022-07-18T13:06:21Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
目的と観測を埋め込みのシーケンスとして表現する模倣学習の枠組みを述べる。
このフレームワークは様々な環境にまたがって効果的な一般化を可能にすることを実証する。
新たなゴールや新しいシーンを含むテストタスクでは、言語モデルによる初期化ポリシーはタスク完了率を43.6%改善する。
論文 参考訳(メタデータ) (2022-02-03T18:55:52Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Data Analytics and Machine Learning Methods, Techniques and Tool for
Model-Driven Engineering of Smart IoT Services [0.0]
この論文は、IoT(Internet of Things)とCPS(Smart Cyber-Physical Systems)のためのスマートサービス開発を促進する新しいアプローチを提案する。
提案されたアプローチは、ソフトウェアエンジニアリングプロセスの抽象化と自動化、データ分析(DA)と機械学習(ML)のプラクティスを提供する。
我々はThingMLと呼ばれるオープンソースモデリングツールを拡張して提案手法の実装と検証を行う。
論文 参考訳(メタデータ) (2021-02-12T11:09:54Z) - From Things' Modeling Language (ThingML) to Things' Machine Learning
(ThingML2) [4.014524824655106]
我々はThingMLを拡張し、モデリングレベルで機械学習をサポートする。
当社のDSLでは、データ分析を行う責務を負うものを定義することができます。
コードジェネレータはJavaとPythonで完全な実装を自動的に生成できます。
論文 参考訳(メタデータ) (2020-09-22T15:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。