論文の概要: LLAVADI: What Matters For Multimodal Large Language Models Distillation
- arxiv url: http://arxiv.org/abs/2407.19409v1
- Date: Sun, 28 Jul 2024 06:10:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 18:22:10.238334
- Title: LLAVADI: What Matters For Multimodal Large Language Models Distillation
- Title(参考訳): LLAVADI: マルチモーダルな大規模言語モデルの蒸留について
- Authors: Shilin Xu, Xiangtai Li, Haobo Yuan, Lu Qi, Yunhai Tong, Ming-Hsuan Yang,
- Abstract要約: 本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
- 参考スコア(独自算出の注目度): 77.73964744238519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent surge in Multimodal Large Language Models (MLLMs) has showcased their remarkable potential for achieving generalized intelligence by integrating visual understanding into Large Language Models.Nevertheless, the sheer model size of MLLMs leads to substantial memory and computational demands that hinder their widespread deployment. In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch. Instead, we focus on what matters for training small-scale MLLMs through knowledge distillation, which is the first step from the multimodal distillation perspective. Our extensive studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process. These results show that joint alignment for both tokens and logit alignment plays critical roles in teacher-student frameworks. In addition, we draw a series of intriguing observations from this study. By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters. Our code and models will be publicly available for further research.
- Abstract(参考訳): 近年のMLLM(Multimodal Large Language Models)の急増は、視覚的理解を大規模言語モデルに統合することで、汎用インテリジェンスを実現するための驚くべき可能性を示している。
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
その代わり、我々は知識蒸留による小規模MLLMの育成に重点を置いており、これはマルチモーダル蒸留の観点からの第一歩である。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関する広範な研究である。
これらの結果から,トークンとロジットのアライメントは,教師と学生のフレームワークにおいて重要な役割を担っていることが明らかとなった。
また,本研究から興味深い観察結果が得られた。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
私たちのコードとモデルは、さらなる研究のために公開されます。
関連論文リスト
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation [41.05687297326706]
LLaVA-MoDは、小規模マルチモーダル言語モデルの効率的なトレーニングを可能にするために設計されたフレームワークである。
スパースミキサーアーキテクチャを言語モデルに統合することにより、s-MLLMのネットワーク構造を最適化する。
また,包括的知識移動を確保するために,先進的な知識移動戦略を提案する。
論文 参考訳(メタデータ) (2024-08-28T15:52:23Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
我々は,事前訓練された大規模モデルからより小型のLCMを開発するための効果的な方法として構造化プルーニングについて検討した。
提案手法では,(1)階層,頭部,中間および隠蔽次元をエンド・ツー・エンドに除去することで,より大きなモデルを特定のターゲット形状にプルーニングするターゲット構造化プルーニングと,(2)各トレーニングバッチにおけるサンプルデータの構成を,異なるドメイン間での損失に基づいて動的に更新する動的バッチローディングという2つの重要な手法を用いる。
論文 参考訳(メタデータ) (2023-10-10T15:13:30Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - MiniLLM: Knowledge Distillation of Large Language Models [112.93051247165089]
知識蒸留(KD)は,大規模言語モデル(LLM)の高い計算要求を低減させる,有望な手法である。
より小さな言語モデルにLPMを蒸留するKD手法を提案する。
提案手法は,120Mから13Bのパラメータを持つ異なるモデルファミリに対してスケーラブルである。
論文 参考訳(メタデータ) (2023-06-14T14:44:03Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。